Fischer matrices of Dempwolff group $2^{5}{^{cdot}}GL(5,2)$

In cite{Demp2} Dempwolff proved the existence of a group of theform $2^{5}{^{cdot}}GL(5,2)$ (a non split extension of theelementary abelian group $2^{5}$ by the general linear group$GL(5,2)$). This group is the second largest maximal subgroup of thesporadic Thompson simple group $mathrm{Th}.$ In thi...

Full description

Bibliographic Details
Main Authors: Ayoub Basheer Mohammed Basheer, Jamshid Moori
Format: Article
Language:English
Published: University of Isfahan 2012-12-01
Series:International Journal of Group Theory
Subjects:
Online Access:http://www.theoryofgroups.ir/?_action=showPDF&article=1590&_ob=e7bcdc949b15b34554b46d8c59cfc1ce&fileName=full_text.pdf
id doaj-07f10cb3fc764625bb03475a251909eb
record_format Article
spelling doaj-07f10cb3fc764625bb03475a251909eb2020-11-24T22:29:03ZengUniversity of IsfahanInternational Journal of Group Theory2251-76502251-76692012-12-01144363Fischer matrices of Dempwolff group $2^{5}{^{cdot}}GL(5,2)$Ayoub Basheer Mohammed BasheerJamshid MooriIn cite{Demp2} Dempwolff proved the existence of a group of theform $2^{5}{^{cdot}}GL(5,2)$ (a non split extension of theelementary abelian group $2^{5}$ by the general linear group$GL(5,2)$). This group is the second largest maximal subgroup of thesporadic Thompson simple group $mathrm{Th}.$ In this paper wecalculate the Fischer matrices of Dempwolff group $overline{G} =2^{5}{^{cdot}}GL(5,2).$ The theory of projective characters isinvolved and we have computed the Schur multiplier together with aprojective character table of an inertia factor group. The fullcharacter table of $overline{G}$ is then can be calculated easily.http://www.theoryofgroups.ir/?_action=showPDF&article=1590&_ob=e7bcdc949b15b34554b46d8c59cfc1ce&fileName=full_text.pdfGroup extensionsDempwolff groupcharacter tableClifford theoryinertia groupsFischer matricesSchur multiplierprojective characterscovering group
collection DOAJ
language English
format Article
sources DOAJ
author Ayoub Basheer Mohammed Basheer
Jamshid Moori
spellingShingle Ayoub Basheer Mohammed Basheer
Jamshid Moori
Fischer matrices of Dempwolff group $2^{5}{^{cdot}}GL(5,2)$
International Journal of Group Theory
Group extensions
Dempwolff group
character table
Clifford theory
inertia groups
Fischer matrices
Schur multiplier
projective characters
covering group
author_facet Ayoub Basheer Mohammed Basheer
Jamshid Moori
author_sort Ayoub Basheer Mohammed Basheer
title Fischer matrices of Dempwolff group $2^{5}{^{cdot}}GL(5,2)$
title_short Fischer matrices of Dempwolff group $2^{5}{^{cdot}}GL(5,2)$
title_full Fischer matrices of Dempwolff group $2^{5}{^{cdot}}GL(5,2)$
title_fullStr Fischer matrices of Dempwolff group $2^{5}{^{cdot}}GL(5,2)$
title_full_unstemmed Fischer matrices of Dempwolff group $2^{5}{^{cdot}}GL(5,2)$
title_sort fischer matrices of dempwolff group $2^{5}{^{cdot}}gl(5,2)$
publisher University of Isfahan
series International Journal of Group Theory
issn 2251-7650
2251-7669
publishDate 2012-12-01
description In cite{Demp2} Dempwolff proved the existence of a group of theform $2^{5}{^{cdot}}GL(5,2)$ (a non split extension of theelementary abelian group $2^{5}$ by the general linear group$GL(5,2)$). This group is the second largest maximal subgroup of thesporadic Thompson simple group $mathrm{Th}.$ In this paper wecalculate the Fischer matrices of Dempwolff group $overline{G} =2^{5}{^{cdot}}GL(5,2).$ The theory of projective characters isinvolved and we have computed the Schur multiplier together with aprojective character table of an inertia factor group. The fullcharacter table of $overline{G}$ is then can be calculated easily.
topic Group extensions
Dempwolff group
character table
Clifford theory
inertia groups
Fischer matrices
Schur multiplier
projective characters
covering group
url http://www.theoryofgroups.ir/?_action=showPDF&article=1590&_ob=e7bcdc949b15b34554b46d8c59cfc1ce&fileName=full_text.pdf
work_keys_str_mv AT ayoubbasheermohammedbasheer fischermatricesofdempwolffgroup25cdotgl52
AT jamshidmoori fischermatricesofdempwolffgroup25cdotgl52
_version_ 1725745077511258112