Synthesis of Hollow Mesoporous TiN Nanostructures as An Efficient Catalyst Support for Methanol Electro-Oxidation

The development of efficient catalyst materials that can drive high catalytic performance is challenging. Here, we report a well-defined hollow mesoporous TiN nanostructure for use as Pt catalyst support material for methanol electro-oxidation. The hollow TiN nanostructure was synthesized by the amm...

Full description

Bibliographic Details
Main Authors: Yoon-Hee Kim, Hyeonkyeong Lee, Dong-Seop Choi, Jiyull Kim, Hyun-Sung Jang, Na-Yeon Kim, Ji-Bong Joo
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Catalysts
Subjects:
Online Access:https://www.mdpi.com/2073-4344/11/7/763
Description
Summary:The development of efficient catalyst materials that can drive high catalytic performance is challenging. Here, we report a well-defined hollow mesoporous TiN nanostructure for use as Pt catalyst support material for methanol electro-oxidation. The hollow TiN nanostructure was synthesized by the ammonia nitridation of pre-synthesized mother hollow anatase TiO<sub>2</sub>, which was prepared by SiO<sub>2</sub> template-assisted sol–gel synthesis followed by chemical etching, acid treatment, and sequential calcination. The variation in the ammonia nitridation temperature allowed the crystalline properties of the samples to be finely tuned. As the ammonia nitrification temperature increased, the crystallinity of the resulting hollow TiN continuously increased, and the corresponding Pt catalysts showed enhanced activity toward methanol electro-oxidation. The hollow TiN-800 sample (H-TiN-800), with a well-developed pure TiN phase, exhibited the highest electrical conductivity and the lowest resistance. The corresponding Pt/H-TiN-800 catalyst exhibited significantly enhanced catalytic activity. In this study, we systemically analyzed the physicochemical characteristics and electrochemical performance of hollow TiN samples and their corresponding Pt catalysts.
ISSN:2073-4344