Different lactic acid bacteria and their combinations regulated the fermentation process of ensiled alfalfa: ensiling characteristics, dynamics of bacterial community and their functional shifts

Summary The objectives of this study were to investigate the adaptation and competition of Lactobacillus plantarum, Pediococcus pentosaceus and Enterococcus faecalis inoculated in alfalfa silage alone or in combination on the fermentation quality, dynamics of bacterial community, and their functiona...

Full description

Bibliographic Details
Main Authors: Jie Bai, Zitong Ding, Wencan Ke, Dongmei Xu, Museng Wang, Wenkang Huang, Yixin Zhang, Fang Liu, Xusheng Guo
Format: Article
Language:English
Published: Wiley 2021-05-01
Series:Microbial Biotechnology
Online Access:https://doi.org/10.1111/1751-7915.13785
Description
Summary:Summary The objectives of this study were to investigate the adaptation and competition of Lactobacillus plantarum, Pediococcus pentosaceus and Enterococcus faecalis inoculated in alfalfa silage alone or in combination on the fermentation quality, dynamics of bacterial community, and their functional shifts using single‐molecule real‐time (SMRT) sequencing technology. Before ensiling, alfalfa was inoculated with L. plantarum (Lp), P. pentosaceus (Pp), E. faecalis (Ef) or their combinations (LpPp, LpEf, LpPpEf) and sampled at 1, 3, 7, 14 and 60 days. After 60‐days fermentation, the Lp‐, Pp‐ and LpPp‐inoculated silages had lower pH but greater concentrations of lactic acid were observed in Pp, LpEf and LpPpEf‐inoculated silages. The inoculants altered the keystone taxa and the bacterial community dynamics in different manners, where L. plantarum, Weissella cibaria and L. pentosaceus dominated the bacterial communities after 14 days‐fermentation in all treatments. The silages with better fermentation quality had simplified bacterial correlation structures. Moreover, different inoculants dramatically changed the carbohydrate, amino acid, energy, nucleotide and vitamin metabolism of bacterial communities during ensiling. Results of the current study indicate that effect of different inoculants on alfalfa silage fermentation was implemented by modulating the succession of bacterial community, their interactions and metabolic pathways as well during ensiling.
ISSN:1751-7915