Stable Sheave Moduli of Rank 2 with Chern Classes c 1 = -1; c2 = 2; c3 = 0 on Q3
<p align="LEFT">In this paper we consider the scheme <em><span style="font-family: CMMI12;">M</span><span style="font-family: CMMI8; font-size: xx-small;"><span style="font-family: CMMI8; font-size: xx-small;">Q</span>...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Yaroslavl State University
2012-01-01
|
Series: | Modelirovanie i Analiz Informacionnyh Sistem |
Subjects: | |
Online Access: | http://mais-journal.ru/jour/article/view/16 |
id |
doaj-076ba098b0d749b88442e4aef7d1a526 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
A. D. Uvarov |
spellingShingle |
A. D. Uvarov Stable Sheave Moduli of Rank 2 with Chern Classes c 1 = -1; c2 = 2; c3 = 0 on Q3 Modelirovanie i Analiz Informacionnyh Sistem компактификация схема модулей когерентный пучок ранга |
author_facet |
A. D. Uvarov |
author_sort |
A. D. Uvarov |
title |
Stable Sheave Moduli of Rank 2 with Chern Classes c 1 = -1; c2 = 2; c3 = 0 on Q3 |
title_short |
Stable Sheave Moduli of Rank 2 with Chern Classes c 1 = -1; c2 = 2; c3 = 0 on Q3 |
title_full |
Stable Sheave Moduli of Rank 2 with Chern Classes c 1 = -1; c2 = 2; c3 = 0 on Q3 |
title_fullStr |
Stable Sheave Moduli of Rank 2 with Chern Classes c 1 = -1; c2 = 2; c3 = 0 on Q3 |
title_full_unstemmed |
Stable Sheave Moduli of Rank 2 with Chern Classes c 1 = -1; c2 = 2; c3 = 0 on Q3 |
title_sort |
stable sheave moduli of rank 2 with chern classes c 1 = -1; c2 = 2; c3 = 0 on q3 |
publisher |
Yaroslavl State University |
series |
Modelirovanie i Analiz Informacionnyh Sistem |
issn |
1818-1015 2313-5417 |
publishDate |
2012-01-01 |
description |
<p align="LEFT">In this paper we consider the scheme <em><span style="font-family: CMMI12;">M</span><span style="font-family: CMMI8; font-size: xx-small;"><span style="font-family: CMMI8; font-size: xx-small;">Q</span></span></em><span style="font-family: CMR12;">( 2;</span><em><span style="font-family: CMSY10;">¡</span></em><span style="font-family: CMR12;">1</span><em><span style="font-family: CMMI12;">; </span></em><span style="font-family: CMR12;">2</span><em><span style="font-family: CMMI12;">; </span></em><span style="font-family: CMR12;">0 ) of stable torsion free sheaves </span>of rank 2 with Chern classes <em><span style="font-family: CMMI12;">c</span></em><span style="font-family: CMR8; font-size: xx-small;"><span style="font-family: CMR8; font-size: xx-small;">1 </span></span><span style="font-family: CMR12;">= -</span><span style="font-family: CMR12;">1, </span><em><span style="font-family: CMMI12;">c</span></em><span style="font-family: CMR8; font-size: xx-small;"><span style="font-family: CMR8; font-size: xx-small;">2 </span></span><span style="font-family: CMR12;">= 2, </span><em><span style="font-family: CMMI12;">c</span></em><span style="font-family: CMR8; font-size: xx-small;"><span style="font-family: CMR8; font-size: xx-small;">3 </span></span><span style="font-family: CMR12;">= 0 on a smooth 3-dimensional </span>projective quadric <em><span style="font-family: CMMI12;">Q</span></em><span style="font-family: CMR12;">. The manifold </span><em><span style="font-family: CMMI12;">M</span><span style="font-family: CMMI8; font-size: xx-small;"><span style="font-family: CMMI8; font-size: xx-small;">Q</span></span></em><span style="font-family: CMR12;">(-</span><span style="font-family: CMR12;">1</span><em><span style="font-family: CMMI12;">; </span></em><span style="font-family: CMR12;">2) of moduli bundles of rank 2 with Chern </span>classes <em><span style="font-family: CMMI12;">c</span></em><span style="font-family: CMR8; font-size: xx-small;"><span style="font-family: CMR8; font-size: xx-small;">1 </span></span><span style="font-family: CMR12;">= -</span><span style="font-family: CMR12;">1, </span><em><span style="font-family: CMMI12;">c</span></em><span style="font-family: CMR8; font-size: xx-small;"><span style="font-family: CMR8; font-size: xx-small;">2 </span></span><span style="font-family: CMR12;">= 2 on </span><em><span style="font-family: CMMI12;">Q </span></em><span style="font-family: CMR12;">was studied by Ottaviani and Szurek in 1994. In 2007 the </span>author described the closure <em><span style="font-family: CMMI12;">M</span><span style="font-family: CMMI8; font-size: xx-small;"><span style="font-family: CMMI8; font-size: xx-small;">Q </span></span></em><span style="font-family: CMR12;">(-</span><span style="font-family: CMR12;">1</span><em><span style="font-family: CMMI12;">; </span></em><span style="font-family: CMR12;">2) in the scheme </span><em><span style="font-family: CMMI12;">M</span><span style="font-family: CMMI8; font-size: xx-small;"><span style="font-family: CMMI8; font-size: xx-small;">Q</span></span></em><span style="font-family: CMR12;">(2;</span><em><span style="font-family: CMSY10;">¡</span></em><span style="font-family: CMR12;">1</span><em><span style="font-family: CMMI12;">; </span></em><span style="font-family: CMR12;">2</span><em><span style="font-family: CMMI12;">; </span></em><span style="font-family: CMR12;">0). In this paper we </span>prove that in <em><span style="font-family: CMMI12;">M</span><span style="font-family: CMMI8; font-size: xx-small;"><span style="font-family: CMMI8; font-size: xx-small;">Q</span></span></em><span style="font-family: CMR12;">(2;</span><em><span style="font-family: CMSY10;">¡</span></em><span style="font-family: CMR12;">1</span><em><span style="font-family: CMMI12;">; </span></em><span style="font-family: CMR12;">2</span><em><span style="font-family: CMMI12;">; </span></em><span style="font-family: CMR12;">0) there exists a unique irreducible component diferent from </span>M<span style="font-family: CMMI8; font-size: xx-small;"><span style="font-family: CMMI8; font-size: xx-small;">Q </span></span><span style="font-family: CMR12;">(</span><em><span style="font-family: CMSY10;">¡</span></em><span style="font-family: CMR12;">1</span><em><span style="font-family: CMMI12;">; </span></em><span style="font-family: CMR12;">2) which is a rational variety of dimension 10.</span></p> |
topic |
компактификация схема модулей когерентный пучок ранга |
url |
http://mais-journal.ru/jour/article/view/16 |
work_keys_str_mv |
AT aduvarov stablesheavemoduliofrank2withchernclassesc11c22c30onq3 |
_version_ |
1725297936070344704 |
spelling |
doaj-076ba098b0d749b88442e4aef7d1a5262020-11-25T00:38:18ZengYaroslavl State UniversityModelirovanie i Analiz Informacionnyh Sistem1818-10152313-54172012-01-01192194010Stable Sheave Moduli of Rank 2 with Chern Classes c 1 = -1; c2 = 2; c3 = 0 on Q3A. D. Uvarov0Ярославский государственный педагогический университет им. К.Д. Ушинского<p align="LEFT">In this paper we consider the scheme <em><span style="font-family: CMMI12;">M</span><span style="font-family: CMMI8; font-size: xx-small;"><span style="font-family: CMMI8; font-size: xx-small;">Q</span></span></em><span style="font-family: CMR12;">( 2;</span><em><span style="font-family: CMSY10;">¡</span></em><span style="font-family: CMR12;">1</span><em><span style="font-family: CMMI12;">; </span></em><span style="font-family: CMR12;">2</span><em><span style="font-family: CMMI12;">; </span></em><span style="font-family: CMR12;">0 ) of stable torsion free sheaves </span>of rank 2 with Chern classes <em><span style="font-family: CMMI12;">c</span></em><span style="font-family: CMR8; font-size: xx-small;"><span style="font-family: CMR8; font-size: xx-small;">1 </span></span><span style="font-family: CMR12;">= -</span><span style="font-family: CMR12;">1, </span><em><span style="font-family: CMMI12;">c</span></em><span style="font-family: CMR8; font-size: xx-small;"><span style="font-family: CMR8; font-size: xx-small;">2 </span></span><span style="font-family: CMR12;">= 2, </span><em><span style="font-family: CMMI12;">c</span></em><span style="font-family: CMR8; font-size: xx-small;"><span style="font-family: CMR8; font-size: xx-small;">3 </span></span><span style="font-family: CMR12;">= 0 on a smooth 3-dimensional </span>projective quadric <em><span style="font-family: CMMI12;">Q</span></em><span style="font-family: CMR12;">. The manifold </span><em><span style="font-family: CMMI12;">M</span><span style="font-family: CMMI8; font-size: xx-small;"><span style="font-family: CMMI8; font-size: xx-small;">Q</span></span></em><span style="font-family: CMR12;">(-</span><span style="font-family: CMR12;">1</span><em><span style="font-family: CMMI12;">; </span></em><span style="font-family: CMR12;">2) of moduli bundles of rank 2 with Chern </span>classes <em><span style="font-family: CMMI12;">c</span></em><span style="font-family: CMR8; font-size: xx-small;"><span style="font-family: CMR8; font-size: xx-small;">1 </span></span><span style="font-family: CMR12;">= -</span><span style="font-family: CMR12;">1, </span><em><span style="font-family: CMMI12;">c</span></em><span style="font-family: CMR8; font-size: xx-small;"><span style="font-family: CMR8; font-size: xx-small;">2 </span></span><span style="font-family: CMR12;">= 2 on </span><em><span style="font-family: CMMI12;">Q </span></em><span style="font-family: CMR12;">was studied by Ottaviani and Szurek in 1994. In 2007 the </span>author described the closure <em><span style="font-family: CMMI12;">M</span><span style="font-family: CMMI8; font-size: xx-small;"><span style="font-family: CMMI8; font-size: xx-small;">Q </span></span></em><span style="font-family: CMR12;">(-</span><span style="font-family: CMR12;">1</span><em><span style="font-family: CMMI12;">; </span></em><span style="font-family: CMR12;">2) in the scheme </span><em><span style="font-family: CMMI12;">M</span><span style="font-family: CMMI8; font-size: xx-small;"><span style="font-family: CMMI8; font-size: xx-small;">Q</span></span></em><span style="font-family: CMR12;">(2;</span><em><span style="font-family: CMSY10;">¡</span></em><span style="font-family: CMR12;">1</span><em><span style="font-family: CMMI12;">; </span></em><span style="font-family: CMR12;">2</span><em><span style="font-family: CMMI12;">; </span></em><span style="font-family: CMR12;">0). In this paper we </span>prove that in <em><span style="font-family: CMMI12;">M</span><span style="font-family: CMMI8; font-size: xx-small;"><span style="font-family: CMMI8; font-size: xx-small;">Q</span></span></em><span style="font-family: CMR12;">(2;</span><em><span style="font-family: CMSY10;">¡</span></em><span style="font-family: CMR12;">1</span><em><span style="font-family: CMMI12;">; </span></em><span style="font-family: CMR12;">2</span><em><span style="font-family: CMMI12;">; </span></em><span style="font-family: CMR12;">0) there exists a unique irreducible component diferent from </span>M<span style="font-family: CMMI8; font-size: xx-small;"><span style="font-family: CMMI8; font-size: xx-small;">Q </span></span><span style="font-family: CMR12;">(</span><em><span style="font-family: CMSY10;">¡</span></em><span style="font-family: CMR12;">1</span><em><span style="font-family: CMMI12;">; </span></em><span style="font-family: CMR12;">2) which is a rational variety of dimension 10.</span></p>http://mais-journal.ru/jour/article/view/16компактификациясхема модулейкогерентный пучок ранга |