Analysis of Lateral Dynamic Response of Caisson Foundation in Layered Clayey Soils considering Scour-Hole Dimensions

As a cross-sea or river deep-water foundation, it is clear that the caisson foundation will be subjected to significant lateral dynamic loads due to winds or waves and suffer from scouring under its long-term effect. In order to obtain the scour effect on the dynamic response of the foundation, an a...

Full description

Bibliographic Details
Main Authors: Wenbo Tu, Xiaoqiang Gu, Xianfeng Ma, Dawei Huang
Format: Article
Language:English
Published: Hindawi Limited 2020-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2020/8827498
Description
Summary:As a cross-sea or river deep-water foundation, it is clear that the caisson foundation will be subjected to significant lateral dynamic loads due to winds or waves and suffer from scouring under its long-term effect. In order to obtain the scour effect on the dynamic response of the foundation, an analytical model describing the scour-hole effect in terms of scour depth, scour width, and slope angle was constructed. Combined with the nonlinear Winkler theory, a method for the dynamic response of the caisson foundation considering the scour-hole dimensions was proposed. Comparisons against the results from the dynamic FEM demonstrate the reliability of this method. The effects of the scour width, slope angle, and scour depth on the dynamic response of the caisson were discussed. The results show that the scour depth affects the dynamic displacement and resonant frequency of the foundation most, whereas the scour width does less and the slope angle does the least; the dynamic response of caisson can be approximated as the case of the slope angle 5° and the scour width 5B when the slope angle is less than 5° and the scour width is greater than 5B, respectively; the effects of scour width and slope angle on the dynamic response of caisson have the similar change pattern in the displacement and resonant frequency when the scour depth is different. However, the effect of amplitude on dynamic response shows a nonlinear increase trend when the scour depth is relatively large.
ISSN:1070-9622
1875-9203