Reactivity of Different Crystalline Surfaces of C<sub>3</sub>S During Early Hydration by the Atomistic Approach

Early hydration of tricalcium silicate (C<sub>3</sub>S) has received great attention over the years due to the increased use of composite cement with a reduced number of clinker phases, especially the addition of what should be very reactive C<sub>3</sub>S to guarantee early...

Full description

Bibliographic Details
Main Authors: K. M. Salah Uddin, Bernhard Middendorf
Format: Article
Language:English
Published: MDPI AG 2019-05-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/12/9/1514
id doaj-07599136a60b44819f1383f4efd09b10
record_format Article
spelling doaj-07599136a60b44819f1383f4efd09b102020-11-25T01:33:17ZengMDPI AGMaterials1996-19442019-05-01129151410.3390/ma12091514ma12091514Reactivity of Different Crystalline Surfaces of C<sub>3</sub>S During Early Hydration by the Atomistic ApproachK. M. Salah Uddin0Bernhard Middendorf1Department of Structural Materials and Construction Chemistry, University of Kassel, Mönchebergstraße 7, 34125 Kassel, GermanyDepartment of Structural Materials and Construction Chemistry, University of Kassel, Mönchebergstraße 7, 34125 Kassel, GermanyEarly hydration of tricalcium silicate (C<sub>3</sub>S) has received great attention over the years due to the increased use of composite cement with a reduced number of clinker phases, especially the addition of what should be very reactive C<sub>3</sub>S to guarantee early strength. Although many mechanisms have been proposed, the dissolution of polygonal C<sub>3</sub>S at the material interface is not yet fully understood. Over the last decade, computational methods have been developed to describe the reaction in the cementitious system. This paper proposes an atomistic insight into the early hydration and the dissolution mechanism of calcium from different crystalline planes of C<sub>3</sub>S using reactive force field (ReaxFF) combined with metadynamics (metaD). The reactivity and thermodynamic stability of different crystal planes were calculated from the dissolution profile of calcium during hydration at 298 K. The simulation results, clearly describe the higher reactivity of (<inline-formula> <math display="inline"> <semantics> <mrow> <mn>0</mn> <mover accent="true"> <mn>1</mn> <mo>¯</mo> </mover> <mover accent="true"> <mn>1</mn> <mo>¯</mo> </mover> </mrow> </semantics> </math> </inline-formula>), (011), (100), and <inline-formula> <math display="inline"> <semantics> <mrow> <mrow> <mo>(</mo> <mrow> <mover accent="true"> <mn>1</mn> <mo>¯</mo> </mover> <mn>00</mn> </mrow> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> surfaces of C<sub>3</sub>S due to the strong interaction with the water, whereas, the dissolution profile explains the lower reactivity of (<inline-formula> <math display="inline"> <semantics> <mrow> <mover accent="true"> <mn>1</mn> <mo>¯</mo> </mover> <mover accent="true"> <mn>1</mn> <mo>¯</mo> </mover> <mn>0</mn> </mrow> </semantics> </math> </inline-formula>), (110), (<inline-formula> <math display="inline"> <semantics> <mrow> <mn>0</mn> <mover accent="true"> <mn>1</mn> <mo>¯</mo> </mover> <mn>0</mn> </mrow> </semantics> </math> </inline-formula>) and the effect of water tessellation on the (001), (010) planes.https://www.mdpi.com/1996-1944/12/9/1514cement hydrationdissolution of C<sub>3</sub>Salitefree energy surfacessurface propertiesmolecular dynamics simulationReaxFFmetadynamics
collection DOAJ
language English
format Article
sources DOAJ
author K. M. Salah Uddin
Bernhard Middendorf
spellingShingle K. M. Salah Uddin
Bernhard Middendorf
Reactivity of Different Crystalline Surfaces of C<sub>3</sub>S During Early Hydration by the Atomistic Approach
Materials
cement hydration
dissolution of C<sub>3</sub>S
alite
free energy surfaces
surface properties
molecular dynamics simulation
ReaxFF
metadynamics
author_facet K. M. Salah Uddin
Bernhard Middendorf
author_sort K. M. Salah Uddin
title Reactivity of Different Crystalline Surfaces of C<sub>3</sub>S During Early Hydration by the Atomistic Approach
title_short Reactivity of Different Crystalline Surfaces of C<sub>3</sub>S During Early Hydration by the Atomistic Approach
title_full Reactivity of Different Crystalline Surfaces of C<sub>3</sub>S During Early Hydration by the Atomistic Approach
title_fullStr Reactivity of Different Crystalline Surfaces of C<sub>3</sub>S During Early Hydration by the Atomistic Approach
title_full_unstemmed Reactivity of Different Crystalline Surfaces of C<sub>3</sub>S During Early Hydration by the Atomistic Approach
title_sort reactivity of different crystalline surfaces of c<sub>3</sub>s during early hydration by the atomistic approach
publisher MDPI AG
series Materials
issn 1996-1944
publishDate 2019-05-01
description Early hydration of tricalcium silicate (C<sub>3</sub>S) has received great attention over the years due to the increased use of composite cement with a reduced number of clinker phases, especially the addition of what should be very reactive C<sub>3</sub>S to guarantee early strength. Although many mechanisms have been proposed, the dissolution of polygonal C<sub>3</sub>S at the material interface is not yet fully understood. Over the last decade, computational methods have been developed to describe the reaction in the cementitious system. This paper proposes an atomistic insight into the early hydration and the dissolution mechanism of calcium from different crystalline planes of C<sub>3</sub>S using reactive force field (ReaxFF) combined with metadynamics (metaD). The reactivity and thermodynamic stability of different crystal planes were calculated from the dissolution profile of calcium during hydration at 298 K. The simulation results, clearly describe the higher reactivity of (<inline-formula> <math display="inline"> <semantics> <mrow> <mn>0</mn> <mover accent="true"> <mn>1</mn> <mo>¯</mo> </mover> <mover accent="true"> <mn>1</mn> <mo>¯</mo> </mover> </mrow> </semantics> </math> </inline-formula>), (011), (100), and <inline-formula> <math display="inline"> <semantics> <mrow> <mrow> <mo>(</mo> <mrow> <mover accent="true"> <mn>1</mn> <mo>¯</mo> </mover> <mn>00</mn> </mrow> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> surfaces of C<sub>3</sub>S due to the strong interaction with the water, whereas, the dissolution profile explains the lower reactivity of (<inline-formula> <math display="inline"> <semantics> <mrow> <mover accent="true"> <mn>1</mn> <mo>¯</mo> </mover> <mover accent="true"> <mn>1</mn> <mo>¯</mo> </mover> <mn>0</mn> </mrow> </semantics> </math> </inline-formula>), (110), (<inline-formula> <math display="inline"> <semantics> <mrow> <mn>0</mn> <mover accent="true"> <mn>1</mn> <mo>¯</mo> </mover> <mn>0</mn> </mrow> </semantics> </math> </inline-formula>) and the effect of water tessellation on the (001), (010) planes.
topic cement hydration
dissolution of C<sub>3</sub>S
alite
free energy surfaces
surface properties
molecular dynamics simulation
ReaxFF
metadynamics
url https://www.mdpi.com/1996-1944/12/9/1514
work_keys_str_mv AT kmsalahuddin reactivityofdifferentcrystallinesurfacesofcsub3subsduringearlyhydrationbytheatomisticapproach
AT bernhardmiddendorf reactivityofdifferentcrystallinesurfacesofcsub3subsduringearlyhydrationbytheatomisticapproach
_version_ 1725078218062430208