Sharyginite, Ca3TiFe2O8, A New Mineral from the Bellerberg Volcano, Germany

The new mineral sharyginite, Ca3TiFe2O8 (P21ma, Z = 2, a = 5.423(2) Å, b = 11.150(8) Å, c = 5.528(2) Å, V = 334.3(3) Å3), a member of the anion deficient perovskite group, was discovered in metacarbonate xenoliths in alkali basalt from the Caspar quarry, Belle...

Full description

Bibliographic Details
Main Authors: Rafał Juroszek, Hannes Krüger, Irina Galuskina, Biljana Krüger, Lidia Jeżak, Bernd Ternes, Justyna Wojdyla, Tomasz Krzykawski, Leonid Pautov, Evgeny Galuskin
Format: Article
Language:English
Published: MDPI AG 2018-07-01
Series:Minerals
Subjects:
Online Access:http://www.mdpi.com/2075-163X/8/7/308
Description
Summary:The new mineral sharyginite, Ca3TiFe2O8 (P21ma, Z = 2, a = 5.423(2) Å, b = 11.150(8) Å, c = 5.528(2) Å, V = 334.3(3) Å3), a member of the anion deficient perovskite group, was discovered in metacarbonate xenoliths in alkali basalt from the Caspar quarry, Bellerberg volcano, Eifel, Germany. In the holotype specimen, sharyginite is widespread in the contact zone of xenolith with alkali basalt. Sharyginite is associated with fluorellestadite, cuspidine, brownmillerite, rondorfite, larnite and minerals of the chlormayenite-wadalite series. The mineral usually forms flat crystals up to 100 µm in length, which are formed by pinacoids {100}, {010} and {001}. Crystals are flattened on (010). Sharyginite is dark brown, opaque with a brown streak and has a sub-metallic lustre. In reflected light, it is light grey and exhibits rare yellowish-brown internal reflections. The calculated density of sharyginite is 3.943 g·cm-3. The empirical formula calculated on the basis of 8 O apfu is Ca3.00(Fe3+1.00Ti4+0.86Mn4+0.11Zr0.01Cr3+0.01Mg0.01)Σ2(Fe3+0.76Al0.20Si0.04)Σ1.00O8. The crystal structure of sharyginite, closely related to shulamitite Ca3TiFeAlO8 structure, consists of double layers of corner-sharing (Ti, Fe3+) O6 octahedra, which are separated by single layers of (Fe3+O4) tetrahedra. We suggest that sharyginite formed after perovskite at high-temperature conditions >1000°C.
ISSN:2075-163X