LNG Tank Sloshing Simulation of Multidegree Motions Based on Modified 3D MPS Method

Modified 3D Moving Particle Semi-Implicit (MPS) method is used to complete the numerical simulation of the fluid sloshing in LNG tank under multidegree excitation motion, which is compared with the results of experiments and 2D calculations obtained by other scholars to verify the reliability. The c...

Full description

Bibliographic Details
Main Authors: Chunhui Wang, Chunyu Guo, Fenglei Han
Format: Article
Language:English
Published: Hindawi Limited 2020-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2020/4018925
Description
Summary:Modified 3D Moving Particle Semi-Implicit (MPS) method is used to complete the numerical simulation of the fluid sloshing in LNG tank under multidegree excitation motion, which is compared with the results of experiments and 2D calculations obtained by other scholars to verify the reliability. The cubic spline kernel functions used in Smoothed Particle Hydrodynamics (SPH) method are adopted to reduce the deviation caused by consecutive two times weighted average calculations; the boundary conditions and the determination of free surface particles are modified to improve the computational stability and accuracy of 3D calculation. The tank is under forced multidegree excitation motion to simulate the real conditions of LNG ships, the pressures and the free surfaces at different times are given to verify the accuracy of 3D simulation, and the free surface and the splashed particles can be simulated more exactly.
ISSN:1024-123X
1563-5147