Turn-key constrained parameter space exploration for particle accelerators using Bayesian active learning
Characterizing an unknown, complex system, like an accelerator, in multi-dimensional space is a challenging task. Here the authors report a Bayesian active learning method - Constrained Proximal Bayesian Exploration - for the characterization of a complex, constrained measurement as a function of mu...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2021-09-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-021-25757-3 |
Summary: | Characterizing an unknown, complex system, like an accelerator, in multi-dimensional space is a challenging task. Here the authors report a Bayesian active learning method - Constrained Proximal Bayesian Exploration - for the characterization of a complex, constrained measurement as a function of multiple free parameters. |
---|---|
ISSN: | 2041-1723 |