Determining the Impact of High Temperature Fire Conditions on Fibre Cement Boards Using Thermogravimetric Analysis

When exposed to temperatures that are progressively and rapidly raised, large dimension fibre cement boards tend to crack. This occurrence is analysed and explained for a specific issue of asymmetric growth of a curvilinear crack in high temperatures. This phenomenon occurred while performing Single...

Full description

Bibliographic Details
Main Authors: Tomas Veliseicik, Ramune Zurauskiene, Marina Valentukeviciene
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/12/10/1717
Description
Summary:When exposed to temperatures that are progressively and rapidly raised, large dimension fibre cement boards tend to crack. This occurrence is analysed and explained for a specific issue of asymmetric growth of a curvilinear crack in high temperatures. This phenomenon occurred while performing Single Burning Item (SBI) experiments at fire loads which are higher than those used in countries of the European Union, which better reflect fire events that may occur in high-rise buildings. In such conditions, fibre cement boards crack, allowing the fire to reach the thermal insulating material which then combusts, thereby helping to spread the conflagration to upper floors. This experiment investigated the temperatures at which fibre cement boards crack, and why. Thermal analysis methods and thermogravimetric experiments were conducted on the fibre boards, followed by x-ray phase analysis investigations. During this phase, x-ray structural analysis was performed while the fibre cement was exposed to temperatures of 1000 °C. The article also presents ongoing change results when heating only composite fibre-cement board materials; phase changes that take place in high temperatures are discussed.
ISSN:2073-8994