On Summability of Spectral Expansions Corresponding to the Sturm-Liouville Operator

We study the completeness property and the basis property of the root function system of the Sturm-Liouville operator defined on the segment [0, 1]. All possible types of two-point boundary conditions are considered.

Bibliographic Details
Main Author: Alexander S. Makin
Format: Article
Language:English
Published: Hindawi Limited 2012-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/2012/843562
id doaj-06ddc2839a4e4a90b6bd79b6a6e81772
record_format Article
spelling doaj-06ddc2839a4e4a90b6bd79b6a6e817722020-11-25T00:55:13ZengHindawi LimitedInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252012-01-01201210.1155/2012/843562843562On Summability of Spectral Expansions Corresponding to the Sturm-Liouville OperatorAlexander S. Makin0Moscow State University of Instrument Engineering and Computer Science, Stromynka 20, Moscow 107996, RussiaWe study the completeness property and the basis property of the root function system of the Sturm-Liouville operator defined on the segment [0, 1]. All possible types of two-point boundary conditions are considered.http://dx.doi.org/10.1155/2012/843562
collection DOAJ
language English
format Article
sources DOAJ
author Alexander S. Makin
spellingShingle Alexander S. Makin
On Summability of Spectral Expansions Corresponding to the Sturm-Liouville Operator
International Journal of Mathematics and Mathematical Sciences
author_facet Alexander S. Makin
author_sort Alexander S. Makin
title On Summability of Spectral Expansions Corresponding to the Sturm-Liouville Operator
title_short On Summability of Spectral Expansions Corresponding to the Sturm-Liouville Operator
title_full On Summability of Spectral Expansions Corresponding to the Sturm-Liouville Operator
title_fullStr On Summability of Spectral Expansions Corresponding to the Sturm-Liouville Operator
title_full_unstemmed On Summability of Spectral Expansions Corresponding to the Sturm-Liouville Operator
title_sort on summability of spectral expansions corresponding to the sturm-liouville operator
publisher Hindawi Limited
series International Journal of Mathematics and Mathematical Sciences
issn 0161-1712
1687-0425
publishDate 2012-01-01
description We study the completeness property and the basis property of the root function system of the Sturm-Liouville operator defined on the segment [0, 1]. All possible types of two-point boundary conditions are considered.
url http://dx.doi.org/10.1155/2012/843562
work_keys_str_mv AT alexandersmakin onsummabilityofspectralexpansionscorrespondingtothesturmliouvilleoperator
_version_ 1725231357735469056