Sharp estimates on the first Dirichlet eigenvalue of nonlinear elliptic operators via maximum principle

In this paper, we study optimal lower and upper bounds for functionals involving the first Dirichlet eigenvalue λF⁢(p,Ω){\lambda_{F}(p,\Omega)} of the anisotropic p-Laplacian, 1<p<+∞{1<p<+\infty}. Our aim is to enhance, by means of the 𝒫{\mathcal{P}}-function method, how it is possible t...

Full description

Bibliographic Details
Main Authors: Della Pietra Francesco, di Blasio Giuseppina, Gavitone Nunzia
Format: Article
Language:English
Published: De Gruyter 2018-09-01
Series:Advances in Nonlinear Analysis
Subjects:
Online Access:https://doi.org/10.1515/anona-2017-0281
id doaj-06bffa379ac3423398a3fd128f13e2bf
record_format Article
spelling doaj-06bffa379ac3423398a3fd128f13e2bf2021-09-06T19:39:55ZengDe GruyterAdvances in Nonlinear Analysis2191-950X2018-09-019127829110.1515/anona-2017-0281anona-2017-0281Sharp estimates on the first Dirichlet eigenvalue of nonlinear elliptic operators via maximum principleDella Pietra Francesco0di Blasio Giuseppina1Gavitone Nunzia2Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Università degli studi di Napoli Federico II, Via Cintia, Monte S. Angelo – 80126Napoli, ItalyUniversità degli Studi della Campania “Luigi Vanvitelli”, viale Lincoln 5, 81100Caserta, ItalyDipartimento di Matematica e Applicazioni “R. Caccioppoli”, Università degli studi di Napoli Federico II, Via Cintia, Monte S. Angelo – 80126Napoli, ItalyIn this paper, we study optimal lower and upper bounds for functionals involving the first Dirichlet eigenvalue λF⁢(p,Ω){\lambda_{F}(p,\Omega)} of the anisotropic p-Laplacian, 1<p<+∞{1<p<+\infty}. Our aim is to enhance, by means of the 𝒫{\mathcal{P}}-function method, how it is possible to get several sharp estimates for λF⁢(p,Ω){\lambda_{F}(p,\Omega)} in terms of several geometric quantities associated to the domain. The 𝒫{\mathcal{P}}-function method is based on a maximum principle for a suitable function involving the eigenfunction and its gradient.https://doi.org/10.1515/anona-2017-0281dirichlet eigenvaluesanisotropic operatorsoptimal estimates35p30 49q10
collection DOAJ
language English
format Article
sources DOAJ
author Della Pietra Francesco
di Blasio Giuseppina
Gavitone Nunzia
spellingShingle Della Pietra Francesco
di Blasio Giuseppina
Gavitone Nunzia
Sharp estimates on the first Dirichlet eigenvalue of nonlinear elliptic operators via maximum principle
Advances in Nonlinear Analysis
dirichlet eigenvalues
anisotropic operators
optimal estimates
35p30
49q10
author_facet Della Pietra Francesco
di Blasio Giuseppina
Gavitone Nunzia
author_sort Della Pietra Francesco
title Sharp estimates on the first Dirichlet eigenvalue of nonlinear elliptic operators via maximum principle
title_short Sharp estimates on the first Dirichlet eigenvalue of nonlinear elliptic operators via maximum principle
title_full Sharp estimates on the first Dirichlet eigenvalue of nonlinear elliptic operators via maximum principle
title_fullStr Sharp estimates on the first Dirichlet eigenvalue of nonlinear elliptic operators via maximum principle
title_full_unstemmed Sharp estimates on the first Dirichlet eigenvalue of nonlinear elliptic operators via maximum principle
title_sort sharp estimates on the first dirichlet eigenvalue of nonlinear elliptic operators via maximum principle
publisher De Gruyter
series Advances in Nonlinear Analysis
issn 2191-950X
publishDate 2018-09-01
description In this paper, we study optimal lower and upper bounds for functionals involving the first Dirichlet eigenvalue λF⁢(p,Ω){\lambda_{F}(p,\Omega)} of the anisotropic p-Laplacian, 1<p<+∞{1<p<+\infty}. Our aim is to enhance, by means of the 𝒫{\mathcal{P}}-function method, how it is possible to get several sharp estimates for λF⁢(p,Ω){\lambda_{F}(p,\Omega)} in terms of several geometric quantities associated to the domain. The 𝒫{\mathcal{P}}-function method is based on a maximum principle for a suitable function involving the eigenfunction and its gradient.
topic dirichlet eigenvalues
anisotropic operators
optimal estimates
35p30
49q10
url https://doi.org/10.1515/anona-2017-0281
work_keys_str_mv AT dellapietrafrancesco sharpestimatesonthefirstdirichleteigenvalueofnonlinearellipticoperatorsviamaximumprinciple
AT diblasiogiuseppina sharpestimatesonthefirstdirichleteigenvalueofnonlinearellipticoperatorsviamaximumprinciple
AT gavitonenunzia sharpestimatesonthefirstdirichleteigenvalueofnonlinearellipticoperatorsviamaximumprinciple
_version_ 1717769746349293568