Sharp estimates on the first Dirichlet eigenvalue of nonlinear elliptic operators via maximum principle
In this paper, we study optimal lower and upper bounds for functionals involving the first Dirichlet eigenvalue λF(p,Ω){\lambda_{F}(p,\Omega)} of the anisotropic p-Laplacian, 1<p<+∞{1<p<+\infty}. Our aim is to enhance, by means of the 𝒫{\mathcal{P}}-function method, how it is possible t...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2018-09-01
|
Series: | Advances in Nonlinear Analysis |
Subjects: | |
Online Access: | https://doi.org/10.1515/anona-2017-0281 |
id |
doaj-06bffa379ac3423398a3fd128f13e2bf |
---|---|
record_format |
Article |
spelling |
doaj-06bffa379ac3423398a3fd128f13e2bf2021-09-06T19:39:55ZengDe GruyterAdvances in Nonlinear Analysis2191-950X2018-09-019127829110.1515/anona-2017-0281anona-2017-0281Sharp estimates on the first Dirichlet eigenvalue of nonlinear elliptic operators via maximum principleDella Pietra Francesco0di Blasio Giuseppina1Gavitone Nunzia2Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Università degli studi di Napoli Federico II, Via Cintia, Monte S. Angelo – 80126Napoli, ItalyUniversità degli Studi della Campania “Luigi Vanvitelli”, viale Lincoln 5, 81100Caserta, ItalyDipartimento di Matematica e Applicazioni “R. Caccioppoli”, Università degli studi di Napoli Federico II, Via Cintia, Monte S. Angelo – 80126Napoli, ItalyIn this paper, we study optimal lower and upper bounds for functionals involving the first Dirichlet eigenvalue λF(p,Ω){\lambda_{F}(p,\Omega)} of the anisotropic p-Laplacian, 1<p<+∞{1<p<+\infty}. Our aim is to enhance, by means of the 𝒫{\mathcal{P}}-function method, how it is possible to get several sharp estimates for λF(p,Ω){\lambda_{F}(p,\Omega)} in terms of several geometric quantities associated to the domain. The 𝒫{\mathcal{P}}-function method is based on a maximum principle for a suitable function involving the eigenfunction and its gradient.https://doi.org/10.1515/anona-2017-0281dirichlet eigenvaluesanisotropic operatorsoptimal estimates35p30 49q10 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Della Pietra Francesco di Blasio Giuseppina Gavitone Nunzia |
spellingShingle |
Della Pietra Francesco di Blasio Giuseppina Gavitone Nunzia Sharp estimates on the first Dirichlet eigenvalue of nonlinear elliptic operators via maximum principle Advances in Nonlinear Analysis dirichlet eigenvalues anisotropic operators optimal estimates 35p30 49q10 |
author_facet |
Della Pietra Francesco di Blasio Giuseppina Gavitone Nunzia |
author_sort |
Della Pietra Francesco |
title |
Sharp estimates on the first Dirichlet eigenvalue of nonlinear elliptic operators via maximum principle |
title_short |
Sharp estimates on the first Dirichlet eigenvalue of nonlinear elliptic operators via maximum principle |
title_full |
Sharp estimates on the first Dirichlet eigenvalue of nonlinear elliptic operators via maximum principle |
title_fullStr |
Sharp estimates on the first Dirichlet eigenvalue of nonlinear elliptic operators via maximum principle |
title_full_unstemmed |
Sharp estimates on the first Dirichlet eigenvalue of nonlinear elliptic operators via maximum principle |
title_sort |
sharp estimates on the first dirichlet eigenvalue of nonlinear elliptic operators via maximum principle |
publisher |
De Gruyter |
series |
Advances in Nonlinear Analysis |
issn |
2191-950X |
publishDate |
2018-09-01 |
description |
In this paper, we study optimal lower and upper bounds for functionals involving the first Dirichlet eigenvalue λF(p,Ω){\lambda_{F}(p,\Omega)} of the anisotropic p-Laplacian, 1<p<+∞{1<p<+\infty}. Our aim is to enhance, by means of the 𝒫{\mathcal{P}}-function method, how it is possible to get several sharp estimates for λF(p,Ω){\lambda_{F}(p,\Omega)} in terms of several geometric quantities associated to the domain. The 𝒫{\mathcal{P}}-function method is based on a maximum principle for a suitable function involving the eigenfunction and its gradient. |
topic |
dirichlet eigenvalues anisotropic operators optimal estimates 35p30 49q10 |
url |
https://doi.org/10.1515/anona-2017-0281 |
work_keys_str_mv |
AT dellapietrafrancesco sharpestimatesonthefirstdirichleteigenvalueofnonlinearellipticoperatorsviamaximumprinciple AT diblasiogiuseppina sharpestimatesonthefirstdirichleteigenvalueofnonlinearellipticoperatorsviamaximumprinciple AT gavitonenunzia sharpestimatesonthefirstdirichleteigenvalueofnonlinearellipticoperatorsviamaximumprinciple |
_version_ |
1717769746349293568 |