The Complexity of Dynamics in Small Neural Circuits.
Mean-field approximations are a powerful tool for studying large neural networks. However, they do not describe well the behavior of networks composed of a small number of neurons. In this case, major differences between the mean-field approximation and the real behavior of the network can arise. Ye...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2016-08-01
|
Series: | PLoS Computational Biology |
Online Access: | http://europepmc.org/articles/PMC4975407?pdf=render |
id |
doaj-06a6104f1f52446586b0930fb8f9e4b5 |
---|---|
record_format |
Article |
spelling |
doaj-06a6104f1f52446586b0930fb8f9e4b52020-11-25T00:46:05ZengPublic Library of Science (PLoS)PLoS Computational Biology1553-734X1553-73582016-08-01128e100499210.1371/journal.pcbi.1004992The Complexity of Dynamics in Small Neural Circuits.Diego FasoliAnna CattaniStefano PanzeriMean-field approximations are a powerful tool for studying large neural networks. However, they do not describe well the behavior of networks composed of a small number of neurons. In this case, major differences between the mean-field approximation and the real behavior of the network can arise. Yet, many interesting problems in neuroscience involve the study of mesoscopic networks composed of a few tens of neurons. Nonetheless, mathematical methods that correctly describe networks of small size are still rare, and this prevents us to make progress in understanding neural dynamics at these intermediate scales. Here we develop a novel systematic analysis of the dynamics of arbitrarily small networks composed of homogeneous populations of excitatory and inhibitory firing-rate neurons. We study the local bifurcations of their neural activity with an approach that is largely analytically tractable, and we numerically determine the global bifurcations. We find that for strong inhibition these networks give rise to very complex dynamics, caused by the formation of multiple branching solutions of the neural dynamics equations that emerge through spontaneous symmetry-breaking. This qualitative change of the neural dynamics is a finite-size effect of the network, that reveals qualitative and previously unexplored differences between mesoscopic cortical circuits and their mean-field approximation. The most important consequence of spontaneous symmetry-breaking is the ability of mesoscopic networks to regulate their degree of functional heterogeneity, which is thought to help reducing the detrimental effect of noise correlations on cortical information processing.http://europepmc.org/articles/PMC4975407?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Diego Fasoli Anna Cattani Stefano Panzeri |
spellingShingle |
Diego Fasoli Anna Cattani Stefano Panzeri The Complexity of Dynamics in Small Neural Circuits. PLoS Computational Biology |
author_facet |
Diego Fasoli Anna Cattani Stefano Panzeri |
author_sort |
Diego Fasoli |
title |
The Complexity of Dynamics in Small Neural Circuits. |
title_short |
The Complexity of Dynamics in Small Neural Circuits. |
title_full |
The Complexity of Dynamics in Small Neural Circuits. |
title_fullStr |
The Complexity of Dynamics in Small Neural Circuits. |
title_full_unstemmed |
The Complexity of Dynamics in Small Neural Circuits. |
title_sort |
complexity of dynamics in small neural circuits. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS Computational Biology |
issn |
1553-734X 1553-7358 |
publishDate |
2016-08-01 |
description |
Mean-field approximations are a powerful tool for studying large neural networks. However, they do not describe well the behavior of networks composed of a small number of neurons. In this case, major differences between the mean-field approximation and the real behavior of the network can arise. Yet, many interesting problems in neuroscience involve the study of mesoscopic networks composed of a few tens of neurons. Nonetheless, mathematical methods that correctly describe networks of small size are still rare, and this prevents us to make progress in understanding neural dynamics at these intermediate scales. Here we develop a novel systematic analysis of the dynamics of arbitrarily small networks composed of homogeneous populations of excitatory and inhibitory firing-rate neurons. We study the local bifurcations of their neural activity with an approach that is largely analytically tractable, and we numerically determine the global bifurcations. We find that for strong inhibition these networks give rise to very complex dynamics, caused by the formation of multiple branching solutions of the neural dynamics equations that emerge through spontaneous symmetry-breaking. This qualitative change of the neural dynamics is a finite-size effect of the network, that reveals qualitative and previously unexplored differences between mesoscopic cortical circuits and their mean-field approximation. The most important consequence of spontaneous symmetry-breaking is the ability of mesoscopic networks to regulate their degree of functional heterogeneity, which is thought to help reducing the detrimental effect of noise correlations on cortical information processing. |
url |
http://europepmc.org/articles/PMC4975407?pdf=render |
work_keys_str_mv |
AT diegofasoli thecomplexityofdynamicsinsmallneuralcircuits AT annacattani thecomplexityofdynamicsinsmallneuralcircuits AT stefanopanzeri thecomplexityofdynamicsinsmallneuralcircuits AT diegofasoli complexityofdynamicsinsmallneuralcircuits AT annacattani complexityofdynamicsinsmallneuralcircuits AT stefanopanzeri complexityofdynamicsinsmallneuralcircuits |
_version_ |
1725267020444860416 |