IoT-Based Management Platform for Real-Time Spectrum and Energy Optimization of Broadcasting Networks

We investigate the feasibility of Internet of Things (IoT) technology to monitor and improve the energy efficiency and spectrum usage efficiency of broadcasting networks in the Ultra-High Frequency (UHF) band. Traditional broadcasting networks are designed with a fixed radiated power to guarantee a...

Full description

Bibliographic Details
Main Authors: Rodney Martinez Alonso, David Plets, Ernesto Fontes Pupo, Margot Deruyck, Luc Martens, Glauco Guillen Nieto, Wout Joseph
Format: Article
Language:English
Published: Hindawi-Wiley 2018-01-01
Series:Wireless Communications and Mobile Computing
Online Access:http://dx.doi.org/10.1155/2018/7287641
Description
Summary:We investigate the feasibility of Internet of Things (IoT) technology to monitor and improve the energy efficiency and spectrum usage efficiency of broadcasting networks in the Ultra-High Frequency (UHF) band. Traditional broadcasting networks are designed with a fixed radiated power to guarantee a certain service availability. However, excessive fading margins often lead to inefficient spectrum usage, higher interference, and power consumption. We present an IoT-based management platform capable of dynamically adjusting the broadcasting network radiated power according to the current propagation conditions. We assess the performance and benchmark two IoT solutions (i.e., LoRa and NB-IoT). By means of the IoT management platform the broadcasting network with adaptive radiated power reduces the power consumption by 15% to 16.3% and increases the spectrum usage efficiency by 32% to 35% (depending on the IoT platform). The IoT feedback loop power consumption represents less than 2% of the system power consumption. In addition, white space spectrum availability for secondary wireless telecommunications services is increased by 34% during 90% of the time.
ISSN:1530-8669
1530-8677