Fractional derivative of the Hurwitz ζ-function and chaotic decay to zero
In this paper the fractional order derivative of a Dirichlet series, Hurwitz zeta function and Riemann zeta function is explicitly computed using the Caputo fractional derivative in the Ortigueira sense. It is observed that the obtained results are a natural generalization of the integer order deriv...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2016-01-01
|
Series: | Journal of King Saud University: Science |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S1018364715000385 |
Summary: | In this paper the fractional order derivative of a Dirichlet series, Hurwitz zeta function and Riemann zeta function is explicitly computed using the Caputo fractional derivative in the Ortigueira sense. It is observed that the obtained results are a natural generalization of the integer order derivative. Some interesting properties of the fractional derivative of the Riemann zeta function are also investigated to show that there is a chaotic decay to zero (in the Gaussian plane) and a promising expression as a complex power series. |
---|---|
ISSN: | 1018-3647 |