SoftME: A Software-Based Memory Protection Approach for TEE System to Resist Physical Attacks
The development of the Internet of Things has made embedded devices widely used. Embedded devices are often used to process sensitive data, making them the target of attackers. ARM TrustZone technology is used to protect embedded device data from compromised operating systems and applications. But a...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi-Wiley
2019-01-01
|
Series: | Security and Communication Networks |
Online Access: | http://dx.doi.org/10.1155/2019/8690853 |
Summary: | The development of the Internet of Things has made embedded devices widely used. Embedded devices are often used to process sensitive data, making them the target of attackers. ARM TrustZone technology is used to protect embedded device data from compromised operating systems and applications. But as the value of the data stored in embedded devices increases, more and more effective physical attacks have emerged. However, TrustZone cannot resist physical attacks. We propose SoftME, an approach that utilizes the on-chip memory space to provide a trusted execution environment for sensitive applications. We protect the confidentiality and integrity of the data stored on the off-chip memory. In addition, we design task scheduling in the encryption process. We implement a prototype system of our approach on the development board supporting TrustZone and evaluate the overhead of our approach. The experimental results show that our approach improves the security of the system, and there is no significant increase in system overhead. |
---|---|
ISSN: | 1939-0114 1939-0122 |