Higher-Spin Symmetries and Deformed Schrödinger Algebra in Conformal Mechanics

The dynamical symmetries of 1+1-dimensional Matrix Partial Differential Equations with a Calogero potential (with/without the presence of an extra oscillatorial de Alfaro-Fubini-Furlan, DFF, term) are investigated. The first-order invariant differential operators induce several invariant algebras an...

Full description

Bibliographic Details
Main Authors: Francesco Toppan, Mauricio Valenzuela
Format: Article
Language:English
Published: Hindawi Limited 2018-01-01
Series:Advances in Mathematical Physics
Online Access:http://dx.doi.org/10.1155/2018/6263150
Description
Summary:The dynamical symmetries of 1+1-dimensional Matrix Partial Differential Equations with a Calogero potential (with/without the presence of an extra oscillatorial de Alfaro-Fubini-Furlan, DFF, term) are investigated. The first-order invariant differential operators induce several invariant algebras and superalgebras. Besides the sl(2)⊕u(1) invariance of the Calogero Conformal Mechanics, an osp2∣2 invariant superalgebra, realized by first-order and second-order differential operators, is obtained. The invariant algebras with an infinite tower of generators are given by the universal enveloping algebra of the deformed Heisenberg algebra, which is shown to be equivalent to a deformed version of the Schrödinger algebra. This vector space also gives rise to a higher-spin (gravity) superalgebra. We furthermore prove that the pure and DFF Matrix Calogero PDEs possess isomorphic dynamical symmetries, being related by a similarity transformation and a redefinition of the time variable.
ISSN:1687-9120
1687-9139