CoSimulating Communication Networks and Electrical System for Performance Evaluation in Smart Grid

In smart grid research domain, simulation study is the first choice, since the analytic complexity is too high and constructing a testbed is very expensive. However, since communication infrastructure and the power grid are tightly coupled with each other in the smart grid, a well-defined combinatio...

Full description

Bibliographic Details
Main Authors: Hwantae Kim, Kangho Kim, Seongjoon Park, Hyunsoon Kim, Hwangnam Kim
Format: Article
Language:English
Published: MDPI AG 2018-01-01
Series:Applied Sciences
Subjects:
Online Access:http://www.mdpi.com/2076-3417/8/1/85
Description
Summary:In smart grid research domain, simulation study is the first choice, since the analytic complexity is too high and constructing a testbed is very expensive. However, since communication infrastructure and the power grid are tightly coupled with each other in the smart grid, a well-defined combination of simulation tools for the systems is required for the simulation study. Therefore, in this paper, we propose a cosimulation work called OOCoSim, which consists of OPNET (network simulation tool) and OpenDSS (power system simulation tool). By employing the simulation tool, an organic and dynamic cosimulation can be realized since both simulators operate on the same computing platform and provide external interfaces through which the simulation can be managed dynamically. In this paper, we provide OOCoSim design principles including a synchronization scheme and detailed descriptions of its implementation. To present the effectiveness of OOCoSim, we define a smart grid application model and conduct a simulation study to see the impact of the defined application and the underlying network system on the distribution system. The simulation results show that the proposed OOCoSim can successfully simulate the integrated scenario of the power and network systems and produce the accurate effects of the networked control in the smart grid.
ISSN:2076-3417