Radial solutions of equations and inequalities involving the <inline-formula><graphic file="1029-242X-1997-409301-i1.gif"/></inline-formula>-Laplacian
<p/> <p>Several problems for the differential equation <inline-formula><graphic file="1029-242X-1997-409301-i2.gif"/></inline-formula> are considered. For <inline-formula><graphic file="1029-242X-1997-409301-i3.gif"/></inline-formula&g...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
1997-01-01
|
Series: | Journal of Inequalities and Applications |
Subjects: | |
Online Access: | http://www.journalofinequalitiesandapplications.com/content/1/409301 |
id |
doaj-063a9654dd3e466b93a9e93c3bd6042a |
---|---|
record_format |
Article |
spelling |
doaj-063a9654dd3e466b93a9e93c3bd6042a2020-11-24T22:14:40ZengSpringerOpenJournal of Inequalities and Applications1025-58341029-242X1997-01-0119971409301Radial solutions of equations and inequalities involving the <inline-formula><graphic file="1029-242X-1997-409301-i1.gif"/></inline-formula>-LaplacianReichel WolfgangWalter Wolfgang<p/> <p>Several problems for the differential equation <inline-formula><graphic file="1029-242X-1997-409301-i2.gif"/></inline-formula> are considered. For <inline-formula><graphic file="1029-242X-1997-409301-i3.gif"/></inline-formula>, the operator <inline-formula><graphic file="1029-242X-1997-409301-i4.gif"/></inline-formula> is the radially symmetric <inline-formula><graphic file="1029-242X-1997-409301-i5.gif"/></inline-formula>-Laplacian in <inline-formula><graphic file="1029-242X-1997-409301-i6.gif"/></inline-formula>. For the initial value problem with given data <inline-formula><graphic file="1029-242X-1997-409301-i7.gif"/></inline-formula> various uniqueness conditions and counterexamples to uniqueness are given. For the case where <inline-formula><graphic file="1029-242X-1997-409301-i8.gif"/></inline-formula> is increasing in <inline-formula><graphic file="1029-242X-1997-409301-i9.gif"/></inline-formula>, a sharp comparison theorem is established; it leads to maximal solutions, nonuniqueness and uniqueness results, among others. Using these results, a strong comparison principle for the boundary value problem and a number of properties of blow-up solutions are proved under weak assumptions on the nonlinearity <inline-formula><graphic file="1029-242X-1997-409301-i10.gif"/></inline-formula>.</p>http://www.journalofinequalitiesandapplications.com/content/1/409301<it>p</it>-Laplacianradial solutionsuniquenesscomparison principleblow-up solutions |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Reichel Wolfgang Walter Wolfgang |
spellingShingle |
Reichel Wolfgang Walter Wolfgang Radial solutions of equations and inequalities involving the <inline-formula><graphic file="1029-242X-1997-409301-i1.gif"/></inline-formula>-Laplacian Journal of Inequalities and Applications <it>p</it>-Laplacian radial solutions uniqueness comparison principle blow-up solutions |
author_facet |
Reichel Wolfgang Walter Wolfgang |
author_sort |
Reichel Wolfgang |
title |
Radial solutions of equations and inequalities involving the <inline-formula><graphic file="1029-242X-1997-409301-i1.gif"/></inline-formula>-Laplacian |
title_short |
Radial solutions of equations and inequalities involving the <inline-formula><graphic file="1029-242X-1997-409301-i1.gif"/></inline-formula>-Laplacian |
title_full |
Radial solutions of equations and inequalities involving the <inline-formula><graphic file="1029-242X-1997-409301-i1.gif"/></inline-formula>-Laplacian |
title_fullStr |
Radial solutions of equations and inequalities involving the <inline-formula><graphic file="1029-242X-1997-409301-i1.gif"/></inline-formula>-Laplacian |
title_full_unstemmed |
Radial solutions of equations and inequalities involving the <inline-formula><graphic file="1029-242X-1997-409301-i1.gif"/></inline-formula>-Laplacian |
title_sort |
radial solutions of equations and inequalities involving the <inline-formula><graphic file="1029-242x-1997-409301-i1.gif"/></inline-formula>-laplacian |
publisher |
SpringerOpen |
series |
Journal of Inequalities and Applications |
issn |
1025-5834 1029-242X |
publishDate |
1997-01-01 |
description |
<p/> <p>Several problems for the differential equation <inline-formula><graphic file="1029-242X-1997-409301-i2.gif"/></inline-formula> are considered. For <inline-formula><graphic file="1029-242X-1997-409301-i3.gif"/></inline-formula>, the operator <inline-formula><graphic file="1029-242X-1997-409301-i4.gif"/></inline-formula> is the radially symmetric <inline-formula><graphic file="1029-242X-1997-409301-i5.gif"/></inline-formula>-Laplacian in <inline-formula><graphic file="1029-242X-1997-409301-i6.gif"/></inline-formula>. For the initial value problem with given data <inline-formula><graphic file="1029-242X-1997-409301-i7.gif"/></inline-formula> various uniqueness conditions and counterexamples to uniqueness are given. For the case where <inline-formula><graphic file="1029-242X-1997-409301-i8.gif"/></inline-formula> is increasing in <inline-formula><graphic file="1029-242X-1997-409301-i9.gif"/></inline-formula>, a sharp comparison theorem is established; it leads to maximal solutions, nonuniqueness and uniqueness results, among others. Using these results, a strong comparison principle for the boundary value problem and a number of properties of blow-up solutions are proved under weak assumptions on the nonlinearity <inline-formula><graphic file="1029-242X-1997-409301-i10.gif"/></inline-formula>.</p> |
topic |
<it>p</it>-Laplacian radial solutions uniqueness comparison principle blow-up solutions |
url |
http://www.journalofinequalitiesandapplications.com/content/1/409301 |
work_keys_str_mv |
AT reichelwolfgang radialsolutionsofequationsandinequalitiesinvolvingtheinlineformulagraphicfile1029242x1997409301i1gifinlineformulalaplacian AT walterwolfgang radialsolutionsofequationsandinequalitiesinvolvingtheinlineformulagraphicfile1029242x1997409301i1gifinlineformulalaplacian |
_version_ |
1725797805224624128 |