Radial solutions of equations and inequalities involving the <inline-formula><graphic file="1029-242X-1997-409301-i1.gif"/></inline-formula>-Laplacian

<p/> <p>Several problems for the differential equation <inline-formula><graphic file="1029-242X-1997-409301-i2.gif"/></inline-formula> are considered. For <inline-formula><graphic file="1029-242X-1997-409301-i3.gif"/></inline-formula&g...

Full description

Bibliographic Details
Main Authors: Reichel Wolfgang, Walter Wolfgang
Format: Article
Language:English
Published: SpringerOpen 1997-01-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://www.journalofinequalitiesandapplications.com/content/1/409301
id doaj-063a9654dd3e466b93a9e93c3bd6042a
record_format Article
spelling doaj-063a9654dd3e466b93a9e93c3bd6042a2020-11-24T22:14:40ZengSpringerOpenJournal of Inequalities and Applications1025-58341029-242X1997-01-0119971409301Radial solutions of equations and inequalities involving the <inline-formula><graphic file="1029-242X-1997-409301-i1.gif"/></inline-formula>-LaplacianReichel WolfgangWalter Wolfgang<p/> <p>Several problems for the differential equation <inline-formula><graphic file="1029-242X-1997-409301-i2.gif"/></inline-formula> are considered. For <inline-formula><graphic file="1029-242X-1997-409301-i3.gif"/></inline-formula>, the operator <inline-formula><graphic file="1029-242X-1997-409301-i4.gif"/></inline-formula> is the radially symmetric <inline-formula><graphic file="1029-242X-1997-409301-i5.gif"/></inline-formula>-Laplacian in <inline-formula><graphic file="1029-242X-1997-409301-i6.gif"/></inline-formula>. For the initial value problem with given data <inline-formula><graphic file="1029-242X-1997-409301-i7.gif"/></inline-formula> various uniqueness conditions and counterexamples to uniqueness are given. For the case where <inline-formula><graphic file="1029-242X-1997-409301-i8.gif"/></inline-formula> is increasing in <inline-formula><graphic file="1029-242X-1997-409301-i9.gif"/></inline-formula>, a sharp comparison theorem is established; it leads to maximal solutions, nonuniqueness and uniqueness results, among others. Using these results, a strong comparison principle for the boundary value problem and a number of properties of blow-up solutions are proved under weak assumptions on the nonlinearity <inline-formula><graphic file="1029-242X-1997-409301-i10.gif"/></inline-formula>.</p>http://www.journalofinequalitiesandapplications.com/content/1/409301<it>p</it>-Laplacianradial solutionsuniquenesscomparison principleblow-up solutions
collection DOAJ
language English
format Article
sources DOAJ
author Reichel Wolfgang
Walter Wolfgang
spellingShingle Reichel Wolfgang
Walter Wolfgang
Radial solutions of equations and inequalities involving the <inline-formula><graphic file="1029-242X-1997-409301-i1.gif"/></inline-formula>-Laplacian
Journal of Inequalities and Applications
<it>p</it>-Laplacian
radial solutions
uniqueness
comparison principle
blow-up solutions
author_facet Reichel Wolfgang
Walter Wolfgang
author_sort Reichel Wolfgang
title Radial solutions of equations and inequalities involving the <inline-formula><graphic file="1029-242X-1997-409301-i1.gif"/></inline-formula>-Laplacian
title_short Radial solutions of equations and inequalities involving the <inline-formula><graphic file="1029-242X-1997-409301-i1.gif"/></inline-formula>-Laplacian
title_full Radial solutions of equations and inequalities involving the <inline-formula><graphic file="1029-242X-1997-409301-i1.gif"/></inline-formula>-Laplacian
title_fullStr Radial solutions of equations and inequalities involving the <inline-formula><graphic file="1029-242X-1997-409301-i1.gif"/></inline-formula>-Laplacian
title_full_unstemmed Radial solutions of equations and inequalities involving the <inline-formula><graphic file="1029-242X-1997-409301-i1.gif"/></inline-formula>-Laplacian
title_sort radial solutions of equations and inequalities involving the <inline-formula><graphic file="1029-242x-1997-409301-i1.gif"/></inline-formula>-laplacian
publisher SpringerOpen
series Journal of Inequalities and Applications
issn 1025-5834
1029-242X
publishDate 1997-01-01
description <p/> <p>Several problems for the differential equation <inline-formula><graphic file="1029-242X-1997-409301-i2.gif"/></inline-formula> are considered. For <inline-formula><graphic file="1029-242X-1997-409301-i3.gif"/></inline-formula>, the operator <inline-formula><graphic file="1029-242X-1997-409301-i4.gif"/></inline-formula> is the radially symmetric <inline-formula><graphic file="1029-242X-1997-409301-i5.gif"/></inline-formula>-Laplacian in <inline-formula><graphic file="1029-242X-1997-409301-i6.gif"/></inline-formula>. For the initial value problem with given data <inline-formula><graphic file="1029-242X-1997-409301-i7.gif"/></inline-formula> various uniqueness conditions and counterexamples to uniqueness are given. For the case where <inline-formula><graphic file="1029-242X-1997-409301-i8.gif"/></inline-formula> is increasing in <inline-formula><graphic file="1029-242X-1997-409301-i9.gif"/></inline-formula>, a sharp comparison theorem is established; it leads to maximal solutions, nonuniqueness and uniqueness results, among others. Using these results, a strong comparison principle for the boundary value problem and a number of properties of blow-up solutions are proved under weak assumptions on the nonlinearity <inline-formula><graphic file="1029-242X-1997-409301-i10.gif"/></inline-formula>.</p>
topic <it>p</it>-Laplacian
radial solutions
uniqueness
comparison principle
blow-up solutions
url http://www.journalofinequalitiesandapplications.com/content/1/409301
work_keys_str_mv AT reichelwolfgang radialsolutionsofequationsandinequalitiesinvolvingtheinlineformulagraphicfile1029242x1997409301i1gifinlineformulalaplacian
AT walterwolfgang radialsolutionsofequationsandinequalitiesinvolvingtheinlineformulagraphicfile1029242x1997409301i1gifinlineformulalaplacian
_version_ 1725797805224624128