Radial solutions of equations and inequalities involving the <inline-formula><graphic file="1029-242X-1997-409301-i1.gif"/></inline-formula>-Laplacian

<p/> <p>Several problems for the differential equation <inline-formula><graphic file="1029-242X-1997-409301-i2.gif"/></inline-formula> are considered. For <inline-formula><graphic file="1029-242X-1997-409301-i3.gif"/></inline-formula&g...

Full description

Bibliographic Details
Main Authors: Reichel Wolfgang, Walter Wolfgang
Format: Article
Language:English
Published: SpringerOpen 1997-01-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://www.journalofinequalitiesandapplications.com/content/1/409301
Description
Summary:<p/> <p>Several problems for the differential equation <inline-formula><graphic file="1029-242X-1997-409301-i2.gif"/></inline-formula> are considered. For <inline-formula><graphic file="1029-242X-1997-409301-i3.gif"/></inline-formula>, the operator <inline-formula><graphic file="1029-242X-1997-409301-i4.gif"/></inline-formula> is the radially symmetric <inline-formula><graphic file="1029-242X-1997-409301-i5.gif"/></inline-formula>-Laplacian in <inline-formula><graphic file="1029-242X-1997-409301-i6.gif"/></inline-formula>. For the initial value problem with given data <inline-formula><graphic file="1029-242X-1997-409301-i7.gif"/></inline-formula> various uniqueness conditions and counterexamples to uniqueness are given. For the case where <inline-formula><graphic file="1029-242X-1997-409301-i8.gif"/></inline-formula> is increasing in <inline-formula><graphic file="1029-242X-1997-409301-i9.gif"/></inline-formula>, a sharp comparison theorem is established; it leads to maximal solutions, nonuniqueness and uniqueness results, among others. Using these results, a strong comparison principle for the boundary value problem and a number of properties of blow-up solutions are proved under weak assumptions on the nonlinearity <inline-formula><graphic file="1029-242X-1997-409301-i10.gif"/></inline-formula>.</p>
ISSN:1025-5834
1029-242X