Ball-milling effect on Indonesian natural bentonite for manganese removal from acid mine drainage

The influences of mechanical milling on Indonesian Natural Bentonite (INB) characteristics and manganese (Mn) removal from acid mine drainage (AMD) were investigated. The INB characteristics were observed by scanning electron microscope (SEM), X-ray diffraction (XRD), nitrogen adsorption-desorption...

Full description

Bibliographic Details
Main Authors: Prastistho Widyawanto, Kurniawan Winarto, Hinode Hirofumi
Format: Article
Language:English
Published: EDP Sciences 2018-01-01
Series:MATEC Web of Conferences
Online Access:https://doi.org/10.1051/matecconf/201815603046
Description
Summary:The influences of mechanical milling on Indonesian Natural Bentonite (INB) characteristics and manganese (Mn) removal from acid mine drainage (AMD) were investigated. The INB characteristics were observed by scanning electron microscope (SEM), X-ray diffraction (XRD), nitrogen adsorption-desorption for specific surface area (SSA) and microporosity measurement, cation exchange capacity (CEC) and particle size distribution (PSD) analyzer. Four minutes milling with frequency 20 Hz on INB caused morphological change which showed more crumbled and destructed particle, lost the (001) peak but still retained the (100) peak that indicated delamination of montmorillonite mineral without breaking the tetrahedral-octahedral-tetrahedral (T-O-T) structure, rose the CEC from 28.49 meq/100g to 35.51 meq/100g, increase in the SSA from 60.63 m2/g to 104.88 m2/g, significant increase in microporosity which described in the t plots and decrease in the mean particle size distribution peak from 49.28 μm to 38.84 μm. The effect of contact time and effect of adsorbent dosage on Mn sorption was studied. Both unmilled and milled samples reached equilibrium at 24 hours and the pH rose from 4 to 7 in first 30 minutes. The Mn removal percentage increased significantly after milling. Using Langmuir isotherm, the maximum adsorbed metals (qmax) also increased from 0.570 to 4.219 mg/g.
ISSN:2261-236X