Preparation of modified polysulfone material decorated by sulfonated citric chitosan for haemodialysis and its haemocompatibility

Polysulfone (PSF) works potentially in haemodialysis due to its great mechanical and chemical stability, but performs poorly in haemocompatibility. For promoting the unpleasant haemocompatibility, sulfonated citric chitosan (SCACS) with the structure and groups similar to heparin was primarily synth...

Full description

Bibliographic Details
Main Authors: Bingxian Lin, Kaiming Liu, Yunren Qiu
Format: Article
Language:English
Published: The Royal Society 2021-09-01
Series:Royal Society Open Science
Subjects:
Online Access:https://royalsocietypublishing.org/doi/10.1098/rsos.210462
Description
Summary:Polysulfone (PSF) works potentially in haemodialysis due to its great mechanical and chemical stability, but performs poorly in haemocompatibility. For promoting the unpleasant haemocompatibility, sulfonated citric chitosan (SCACS) with the structure and groups similar to heparin was primarily synthesized by acylation and sulfonation. Furthermore, the chloroacylated PSF was pretreated by electrophilic chloroacetyl chloride to achieve more active sites for further reaction; the following membranes underwent the amination and were named amination polysulfone (AMPSF) membranes. Moreover, SCACS with abundant carboxyl and sulfonic groups was covalently grafted at the surface of pretreated PSF membranes, called PSF-SCACS membranes. The PSF-SCACS membranes were successfully synthesized and characterized by 1H NMR, ATR-FTIR and XPS. In addition, the water contact angle of PSF-SCACS membranes decreased by 47° and the morphologies of the membranes changed little compared with the unmodified PSF membranes. The haemocompatible testing results, including protein adsorption, platelet adhesion, haemolysis rate, plasma recalcification time, activated partial thromboplastin time (APTT), prothrombin time (PT) and thrombin time (TT), demonstrated that the PSF-SCACS membranes possessed excellent haemocompatible performances, and SCACS played an important role in the modification.
ISSN:2054-5703