Transient free convection in an inclined square porous cavity filled with a nanofluid using LTNE and Buongiorno’s models
The combined effect of Brownian diffusion, thermophoresis and cavity inclination angle on natural convective heat transfer in an inclined porous enclosure has been studied numerically. Fluid containing nanoparticles of low concentration circulates inside the cavity under the effect of the buoyancy f...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2018-01-01
|
Series: | MATEC Web of Conferences |
Online Access: | https://doi.org/10.1051/matecconf/201824003014 |
Summary: | The combined effect of Brownian diffusion, thermophoresis and cavity inclination angle on natural convective heat transfer in an inclined porous enclosure has been studied numerically. Fluid containing nanoparticles of low concentration circulates inside the cavity under the effect of the buoyancy force. Governing equations with corresponding boundary conditions formulated using the non-dimensional stream function and vorticity variables have been solved by the finite difference method. An influence of the cavity inclination angle, Darcy and Nield numbers on nanofluid flow and heat transfer has been investigated. It has been found that high Nield numbers illustrate more equilibrium temperature distribution inside the porous cavity. |
---|---|
ISSN: | 2261-236X |