Numerical study of the effect of geometry variation on the performance of innovative design wind speed enhancer

Low wind speeds is one of the challenges of wind energy in several countries. The innovative design of wind speed enhancer is one of many solution of those challenges. The wind speed enhancer using the principle of constriction where the speed will be increased at a narrower area. The innovative des...

Full description

Bibliographic Details
Main Authors: Wibowo Theodorus T., Daulay Faizal H., Suryopratomo Kutut, Budiarto Rachmawan
Format: Article
Language:English
Published: EDP Sciences 2018-01-01
Series:E3S Web of Conferences
Online Access:https://doi.org/10.1051/e3sconf/20184201013
Description
Summary:Low wind speeds is one of the challenges of wind energy in several countries. The innovative design of wind speed enhancer is one of many solution of those challenges. The wind speed enhancer using the principle of constriction where the speed will be increased at a narrower area. The innovative design wind speed enhancer is unique because of the wind turbines are installed close to the ground surface. The uniqueness can reduce the cost of installation, maintenance, and can reduce the possibility of damage caused by lightning. The proposed of wind speed enhancer design was shown to be successful in increasing the wind speed at venturi that reach 2.26 faster than wind speed at environment for variation of the funnel gap and 2.35 faster than wind speed at environment for variation of the throat diameter. This result is better than existing design. The results of this study is 21.5% better than existing design for variation of funnel gap and 24.2% better than existing design for variation of the throat diameter.
ISSN:2267-1242