Fusaricidins in Paenibacillus polymyxa A21 and their antagonistic activity against Botrytis cinerea on tomato

Four kinds of antifungal compounds from an extract of Paenibacillus polymyxa A21 with molecular masses of 883.56, 897.59, 947.55, and 961.58 Da were characterized as the members of fusaricidin-type of antibiotics according to LC-MS analysis. Fusaricidins isolated from culture filtrate displayed high...

Full description

Bibliographic Details
Main Author: Weicheng LIU, Xiaoli WU, Xuelian BAI, Hong ZHANG, Dan DONG, Taotao ZHANG, Huiling WU
Format: Article
Language:English
Published: Higher Education Press 2018-05-01
Series:Frontiers of Agricultural Science and Engineering
Subjects:
Online Access:http://academic.hep.com.cn/fase/fileup/2095-7505/PDF/1506473626456-1260588178.pdf
Description
Summary:Four kinds of antifungal compounds from an extract of Paenibacillus polymyxa A21 with molecular masses of 883.56, 897.59, 947.55, and 961.58 Da were characterized as the members of fusaricidin-type of antibiotics according to LC-MS analysis. Fusaricidins isolated from culture filtrate displayed high antagonistic activity against several plant fungal pathogens, especially Botrytis cinerea, the causal agent of gray mold. The fusaricidins biosynthetic gene cluster (BGC) from A21 was cloned by PCR and comparative cluster analysis revealed that gene fusTE, the 3′ boundary of the fusaricidin BGC in strain PKB1, was not present in fusaricidin BGC of A21, indicating that fusTE is not necessary for fusaricidin synthesis. Fusaricidin extract from A21 significantly reduced gray mold disease incidence and severity on tomato. The mRNA levels for three patho-genesis-related proteins (PRs) revealed that treatment of tomato leaves with fusaricidin extract induced the expression of PR genes to different levels, suggesting that one reason for the reduction of gray mold infection by fusaricidin is induction of PR proteins, which lead to increased resistance to pathogens. This is the first report of the application of fusaricidins to control tomato gray mold and the comparative cluster analysis provides important molecular basis for research on fusaricidin biosynthesis.
ISSN:2095-7505