Summary: | Abstract We demonstrate an ultrahigh-sensitivity gas pressure sensor based on the Fabry-Perot interferometer employing a fiber-tip diaphragm-sealed cavity. The cavity is comprised of a silica capillary and ultrathin silica diaphragm with a thickness of 170 nm, with represents the thinnest silica diaphragm fabricated thus far by an electrical arc discharge technique. The resulting Fabry-Perot interferometer-based gas pressure sensor demonstrates a gas pressure sensitivity of about 12.22 nm/kPa, which is more than two orders of magnitude greater than that of a similarly configured fiber-tip air bubble sensor. Moreover, our gas pressure sensor has a low temperature cross-sensitivity of about 106 Pa/°C, and the sensor functions well up to a temperature of about 1000 °C. As such, the sensor can potentially be employed in high-temperature environments.
|