Slice Holomorphic Functions in Several Variables with Bounded <i>L</i>-Index in Direction
In this paper, for a given direction <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="bold">b</mi> <mo>∈</mo> <msup> <mi mathvariant="double-struck">C</mi> <mi>...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-07-01
|
Series: | Axioms |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-1680/8/3/88 |
id |
doaj-058a30da767047649eeffec2dafe7965 |
---|---|
record_format |
Article |
spelling |
doaj-058a30da767047649eeffec2dafe79652020-11-25T02:01:52ZengMDPI AGAxioms2075-16802019-07-01838810.3390/axioms8030088axioms8030088Slice Holomorphic Functions in Several Variables with Bounded <i>L</i>-Index in DirectionAndriy Bandura0Oleh Skaskiv1Department of Advanced Mathematics, Ivano-Frankivsk National Technical University of Oil and Gas, 76019 Ivano-Frankivsk, UkraineDepartment of Mechanics and Mathematics, Ivan Franko National University of Lviv, 79000 Lviv, UkraineIn this paper, for a given direction <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="bold">b</mi> <mo>∈</mo> <msup> <mi mathvariant="double-struck">C</mi> <mi>n</mi> </msup> <mo>\</mo> <mrow> <mo>{</mo> <mn mathvariant="bold">0</mn> <mo>}</mo> </mrow> </mrow> </semantics> </math> </inline-formula> we investigate slice entire functions of several complex variables, i.e., we consider functions which are entire on a complex line <inline-formula> <math display="inline"> <semantics> <mrow> <mo>{</mo> <msup> <mi>z</mi> <mn>0</mn> </msup> <mo>+</mo> <mi>t</mi> <mi mathvariant="bold">b</mi> <mo>:</mo> <mi>t</mi> <mo>∈</mo> <mi mathvariant="double-struck">C</mi> <mo>}</mo> </mrow> </semantics> </math> </inline-formula> for any <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>z</mi> <mn>0</mn> </msup> <mo>∈</mo> <msup> <mi mathvariant="double-struck">C</mi> <mi>n</mi> </msup> </mrow> </semantics> </math> </inline-formula>. Unlike to quaternionic analysis, we fix the direction <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">b</mi> </semantics> </math> </inline-formula>. The usage of the term slice entire function is wider than in quaternionic analysis. It does not imply joint holomorphy. For example, it allows consideration of functions which are holomorphic in variable <inline-formula> <math display="inline"> <semantics> <msub> <mi>z</mi> <mn>1</mn> </msub> </semantics> </math> </inline-formula> and continuous in variable <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>.</mo> </mrow> </semantics> </math> </inline-formula> For this class of functions there is introduced a concept of boundedness of <i>L</i>-index in the direction <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">b</mi> </semantics> </math> </inline-formula> where <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="bold">L</mi> <mo>:</mo> <msup> <mi mathvariant="double-struck">C</mi> <mi>n</mi> </msup> <mo>→</mo> <msub> <mi mathvariant="double-struck">R</mi> <mo>+</mo> </msub> </mrow> </semantics> </math> </inline-formula> is a positive continuous function. We present necessary and sufficient conditions of boundedness of <i>L</i>-index in the direction. In this paper, there are considered local behavior of directional derivatives and maximum modulus on a circle for functions from this class. Also, we show that every slice holomorphic and joint continuous function has bounded <i>L</i>-index in direction in any bounded domain and for any continuous function <inline-formula> <math display="inline"> <semantics> <mrow> <mi>L</mi> <mo>:</mo> <msup> <mi mathvariant="double-struck">C</mi> <mi>n</mi> </msup> <mo>→</mo> <msub> <mi mathvariant="double-struck">R</mi> <mo>+</mo> </msub> <mo>.</mo> </mrow> </semantics> </math> </inline-formula>https://www.mdpi.com/2075-1680/8/3/88bounded indexbounded <i>L</i>-index in directionslice functionentire functionbounded <i>l</i>-index |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Andriy Bandura Oleh Skaskiv |
spellingShingle |
Andriy Bandura Oleh Skaskiv Slice Holomorphic Functions in Several Variables with Bounded <i>L</i>-Index in Direction Axioms bounded index bounded <i>L</i>-index in direction slice function entire function bounded <i>l</i>-index |
author_facet |
Andriy Bandura Oleh Skaskiv |
author_sort |
Andriy Bandura |
title |
Slice Holomorphic Functions in Several Variables with Bounded <i>L</i>-Index in Direction |
title_short |
Slice Holomorphic Functions in Several Variables with Bounded <i>L</i>-Index in Direction |
title_full |
Slice Holomorphic Functions in Several Variables with Bounded <i>L</i>-Index in Direction |
title_fullStr |
Slice Holomorphic Functions in Several Variables with Bounded <i>L</i>-Index in Direction |
title_full_unstemmed |
Slice Holomorphic Functions in Several Variables with Bounded <i>L</i>-Index in Direction |
title_sort |
slice holomorphic functions in several variables with bounded <i>l</i>-index in direction |
publisher |
MDPI AG |
series |
Axioms |
issn |
2075-1680 |
publishDate |
2019-07-01 |
description |
In this paper, for a given direction <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="bold">b</mi> <mo>∈</mo> <msup> <mi mathvariant="double-struck">C</mi> <mi>n</mi> </msup> <mo>\</mo> <mrow> <mo>{</mo> <mn mathvariant="bold">0</mn> <mo>}</mo> </mrow> </mrow> </semantics> </math> </inline-formula> we investigate slice entire functions of several complex variables, i.e., we consider functions which are entire on a complex line <inline-formula> <math display="inline"> <semantics> <mrow> <mo>{</mo> <msup> <mi>z</mi> <mn>0</mn> </msup> <mo>+</mo> <mi>t</mi> <mi mathvariant="bold">b</mi> <mo>:</mo> <mi>t</mi> <mo>∈</mo> <mi mathvariant="double-struck">C</mi> <mo>}</mo> </mrow> </semantics> </math> </inline-formula> for any <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>z</mi> <mn>0</mn> </msup> <mo>∈</mo> <msup> <mi mathvariant="double-struck">C</mi> <mi>n</mi> </msup> </mrow> </semantics> </math> </inline-formula>. Unlike to quaternionic analysis, we fix the direction <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">b</mi> </semantics> </math> </inline-formula>. The usage of the term slice entire function is wider than in quaternionic analysis. It does not imply joint holomorphy. For example, it allows consideration of functions which are holomorphic in variable <inline-formula> <math display="inline"> <semantics> <msub> <mi>z</mi> <mn>1</mn> </msub> </semantics> </math> </inline-formula> and continuous in variable <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>.</mo> </mrow> </semantics> </math> </inline-formula> For this class of functions there is introduced a concept of boundedness of <i>L</i>-index in the direction <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">b</mi> </semantics> </math> </inline-formula> where <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="bold">L</mi> <mo>:</mo> <msup> <mi mathvariant="double-struck">C</mi> <mi>n</mi> </msup> <mo>→</mo> <msub> <mi mathvariant="double-struck">R</mi> <mo>+</mo> </msub> </mrow> </semantics> </math> </inline-formula> is a positive continuous function. We present necessary and sufficient conditions of boundedness of <i>L</i>-index in the direction. In this paper, there are considered local behavior of directional derivatives and maximum modulus on a circle for functions from this class. Also, we show that every slice holomorphic and joint continuous function has bounded <i>L</i>-index in direction in any bounded domain and for any continuous function <inline-formula> <math display="inline"> <semantics> <mrow> <mi>L</mi> <mo>:</mo> <msup> <mi mathvariant="double-struck">C</mi> <mi>n</mi> </msup> <mo>→</mo> <msub> <mi mathvariant="double-struck">R</mi> <mo>+</mo> </msub> <mo>.</mo> </mrow> </semantics> </math> </inline-formula> |
topic |
bounded index bounded <i>L</i>-index in direction slice function entire function bounded <i>l</i>-index |
url |
https://www.mdpi.com/2075-1680/8/3/88 |
work_keys_str_mv |
AT andriybandura sliceholomorphicfunctionsinseveralvariableswithboundediliindexindirection AT olehskaskiv sliceholomorphicfunctionsinseveralvariableswithboundediliindexindirection |
_version_ |
1724955368140832768 |