Slice Holomorphic Functions in Several Variables with Bounded <i>L</i>-Index in Direction

In this paper, for a given direction <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="bold">b</mi> <mo>&#8712;</mo> <msup> <mi mathvariant="double-struck">C</mi> <mi>...

Full description

Bibliographic Details
Main Authors: Andriy Bandura, Oleh Skaskiv
Format: Article
Language:English
Published: MDPI AG 2019-07-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/8/3/88
id doaj-058a30da767047649eeffec2dafe7965
record_format Article
spelling doaj-058a30da767047649eeffec2dafe79652020-11-25T02:01:52ZengMDPI AGAxioms2075-16802019-07-01838810.3390/axioms8030088axioms8030088Slice Holomorphic Functions in Several Variables with Bounded <i>L</i>-Index in DirectionAndriy Bandura0Oleh Skaskiv1Department of Advanced Mathematics, Ivano-Frankivsk National Technical University of Oil and Gas, 76019 Ivano-Frankivsk, UkraineDepartment of Mechanics and Mathematics, Ivan Franko National University of Lviv, 79000 Lviv, UkraineIn this paper, for a given direction <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="bold">b</mi> <mo>&#8712;</mo> <msup> <mi mathvariant="double-struck">C</mi> <mi>n</mi> </msup> <mo>\</mo> <mrow> <mo>{</mo> <mn mathvariant="bold">0</mn> <mo>}</mo> </mrow> </mrow> </semantics> </math> </inline-formula> we investigate slice entire functions of several complex variables, i.e., we consider functions which are entire on a complex line <inline-formula> <math display="inline"> <semantics> <mrow> <mo>{</mo> <msup> <mi>z</mi> <mn>0</mn> </msup> <mo>+</mo> <mi>t</mi> <mi mathvariant="bold">b</mi> <mo>:</mo> <mi>t</mi> <mo>&#8712;</mo> <mi mathvariant="double-struck">C</mi> <mo>}</mo> </mrow> </semantics> </math> </inline-formula> for any <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>z</mi> <mn>0</mn> </msup> <mo>&#8712;</mo> <msup> <mi mathvariant="double-struck">C</mi> <mi>n</mi> </msup> </mrow> </semantics> </math> </inline-formula>. Unlike to quaternionic analysis, we fix the direction <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">b</mi> </semantics> </math> </inline-formula>. The usage of the term slice entire function is wider than in quaternionic analysis. It does not imply joint holomorphy. For example, it allows consideration of functions which are holomorphic in variable <inline-formula> <math display="inline"> <semantics> <msub> <mi>z</mi> <mn>1</mn> </msub> </semantics> </math> </inline-formula> and continuous in variable <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>.</mo> </mrow> </semantics> </math> </inline-formula> For this class of functions there is introduced a concept of boundedness of <i>L</i>-index in the direction <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">b</mi> </semantics> </math> </inline-formula> where <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="bold">L</mi> <mo>:</mo> <msup> <mi mathvariant="double-struck">C</mi> <mi>n</mi> </msup> <mo>&#8594;</mo> <msub> <mi mathvariant="double-struck">R</mi> <mo>+</mo> </msub> </mrow> </semantics> </math> </inline-formula> is a positive continuous function. We present necessary and sufficient conditions of boundedness of <i>L</i>-index in the direction. In this paper, there are considered local behavior of directional derivatives and maximum modulus on a circle for functions from this class. Also, we show that every slice holomorphic and joint continuous function has bounded <i>L</i>-index in direction in any bounded domain and for any continuous function <inline-formula> <math display="inline"> <semantics> <mrow> <mi>L</mi> <mo>:</mo> <msup> <mi mathvariant="double-struck">C</mi> <mi>n</mi> </msup> <mo>&#8594;</mo> <msub> <mi mathvariant="double-struck">R</mi> <mo>+</mo> </msub> <mo>.</mo> </mrow> </semantics> </math> </inline-formula>https://www.mdpi.com/2075-1680/8/3/88bounded indexbounded <i>L</i>-index in directionslice functionentire functionbounded <i>l</i>-index
collection DOAJ
language English
format Article
sources DOAJ
author Andriy Bandura
Oleh Skaskiv
spellingShingle Andriy Bandura
Oleh Skaskiv
Slice Holomorphic Functions in Several Variables with Bounded <i>L</i>-Index in Direction
Axioms
bounded index
bounded <i>L</i>-index in direction
slice function
entire function
bounded <i>l</i>-index
author_facet Andriy Bandura
Oleh Skaskiv
author_sort Andriy Bandura
title Slice Holomorphic Functions in Several Variables with Bounded <i>L</i>-Index in Direction
title_short Slice Holomorphic Functions in Several Variables with Bounded <i>L</i>-Index in Direction
title_full Slice Holomorphic Functions in Several Variables with Bounded <i>L</i>-Index in Direction
title_fullStr Slice Holomorphic Functions in Several Variables with Bounded <i>L</i>-Index in Direction
title_full_unstemmed Slice Holomorphic Functions in Several Variables with Bounded <i>L</i>-Index in Direction
title_sort slice holomorphic functions in several variables with bounded <i>l</i>-index in direction
publisher MDPI AG
series Axioms
issn 2075-1680
publishDate 2019-07-01
description In this paper, for a given direction <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="bold">b</mi> <mo>&#8712;</mo> <msup> <mi mathvariant="double-struck">C</mi> <mi>n</mi> </msup> <mo>\</mo> <mrow> <mo>{</mo> <mn mathvariant="bold">0</mn> <mo>}</mo> </mrow> </mrow> </semantics> </math> </inline-formula> we investigate slice entire functions of several complex variables, i.e., we consider functions which are entire on a complex line <inline-formula> <math display="inline"> <semantics> <mrow> <mo>{</mo> <msup> <mi>z</mi> <mn>0</mn> </msup> <mo>+</mo> <mi>t</mi> <mi mathvariant="bold">b</mi> <mo>:</mo> <mi>t</mi> <mo>&#8712;</mo> <mi mathvariant="double-struck">C</mi> <mo>}</mo> </mrow> </semantics> </math> </inline-formula> for any <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>z</mi> <mn>0</mn> </msup> <mo>&#8712;</mo> <msup> <mi mathvariant="double-struck">C</mi> <mi>n</mi> </msup> </mrow> </semantics> </math> </inline-formula>. Unlike to quaternionic analysis, we fix the direction <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">b</mi> </semantics> </math> </inline-formula>. The usage of the term slice entire function is wider than in quaternionic analysis. It does not imply joint holomorphy. For example, it allows consideration of functions which are holomorphic in variable <inline-formula> <math display="inline"> <semantics> <msub> <mi>z</mi> <mn>1</mn> </msub> </semantics> </math> </inline-formula> and continuous in variable <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>.</mo> </mrow> </semantics> </math> </inline-formula> For this class of functions there is introduced a concept of boundedness of <i>L</i>-index in the direction <inline-formula> <math display="inline"> <semantics> <mi mathvariant="bold">b</mi> </semantics> </math> </inline-formula> where <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="bold">L</mi> <mo>:</mo> <msup> <mi mathvariant="double-struck">C</mi> <mi>n</mi> </msup> <mo>&#8594;</mo> <msub> <mi mathvariant="double-struck">R</mi> <mo>+</mo> </msub> </mrow> </semantics> </math> </inline-formula> is a positive continuous function. We present necessary and sufficient conditions of boundedness of <i>L</i>-index in the direction. In this paper, there are considered local behavior of directional derivatives and maximum modulus on a circle for functions from this class. Also, we show that every slice holomorphic and joint continuous function has bounded <i>L</i>-index in direction in any bounded domain and for any continuous function <inline-formula> <math display="inline"> <semantics> <mrow> <mi>L</mi> <mo>:</mo> <msup> <mi mathvariant="double-struck">C</mi> <mi>n</mi> </msup> <mo>&#8594;</mo> <msub> <mi mathvariant="double-struck">R</mi> <mo>+</mo> </msub> <mo>.</mo> </mrow> </semantics> </math> </inline-formula>
topic bounded index
bounded <i>L</i>-index in direction
slice function
entire function
bounded <i>l</i>-index
url https://www.mdpi.com/2075-1680/8/3/88
work_keys_str_mv AT andriybandura sliceholomorphicfunctionsinseveralvariableswithboundediliindexindirection
AT olehskaskiv sliceholomorphicfunctionsinseveralvariableswithboundediliindexindirection
_version_ 1724955368140832768