Existence of multiple solutions and estimates of extremal values for a Kirchhoff type problem with fast increasing weight and critical nonlinearity

In this article, we study the Kirchhoff type problem $$ -\Big(a+\epsilon\int_{\mathbb{R}^3} K(x)|\nabla u|^2dx\Big)\hbox{div} (K(x)\nabla u)=\lambda K(x)f(x)|u|^{q-2}u+K(x)|u|^{4}u, $$ where $x\in \mathbb{R}^3$, $1<q<2$, $K(x)=\exp({|x|^{\alpha}/4})$ with $\alpha\geq2$, $\epsilon>0$...

Full description

Bibliographic Details
Main Authors: Xiaotao Qian, Jianqing Chen
Format: Article
Language:English
Published: Texas State University 2018-07-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2018/144/abstr.html
Description
Summary:In this article, we study the Kirchhoff type problem $$ -\Big(a+\epsilon\int_{\mathbb{R}^3} K(x)|\nabla u|^2dx\Big)\hbox{div} (K(x)\nabla u)=\lambda K(x)f(x)|u|^{q-2}u+K(x)|u|^{4}u, $$ where $x\in \mathbb{R}^3$, $1<q<2$, $K(x)=\exp({|x|^{\alpha}/4})$ with $\alpha\geq2$, $\epsilon>0$ is small enough, and the parameters $a, \lambda >0$. Under some assumptions on $f(x)$, we establish the existence of two nonnegative nontrivial solutions and obtain uniform lower estimates for extremal values of the problem via variational methods.
ISSN:1072-6691