Intensity and Wavelength-Division Multiplexing Fiber Sensor Interrogation Using a Combination of Autoencoder Pre-Trained Convolution Neural Network and Differential Evolution Algorithm
This paper proposes a new fiber Bragg grating central wavelength interrogation system by combining evolutionary algorithm and machine learning techniques integrated with an unsupervised autoencoder (AE) pre-training strategy. The proposed unsupervised AE pre-training convolution neural network (CNN)...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2021-01-01
|
Series: | IEEE Photonics Journal |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9319234/ |
Summary: | This paper proposes a new fiber Bragg grating central wavelength interrogation system by combining evolutionary algorithm and machine learning techniques integrated with an unsupervised autoencoder (AE) pre-training strategy. The proposed unsupervised AE pre-training convolution neural network (CNN) allows training of the convolutional layers independently from a regression task in order to learn a new data representation and give better generalization. It is also used to improve the system accuracy by four times without extra-labeled data. Moreover, AE is combined with a differential evolutionary (DE) algorithm to automate the human labeling task. The proposed autoencoder pre-training convolution neural network and differential evolutionary (AECNNDE) interrogation system achieve good accuracy and can speed-up the computational time by a maximum of 30 times than DE algorithm. |
---|---|
ISSN: | 1943-0655 |