The spectrum of quantum-group-invariant transfer matrices

Integrable open quantum spin-chain transfer matrices constructed from trigonometric R-matrices associated to affine Lie algebras gˆ, and from certain K-matrices (reflection matrices) depending on a discrete parameter p, were recently considered in arXiv:1802.04864 and arXiv:1805.10144. It was shown...

Full description

Bibliographic Details
Main Authors: Rafael I. Nepomechie, Ana L. Retore
Format: Article
Language:English
Published: Elsevier 2019-01-01
Series:Nuclear Physics B
Online Access:http://www.sciencedirect.com/science/article/pii/S055032131830333X
id doaj-052a89111af54c6294045bfed733cc4b
record_format Article
spelling doaj-052a89111af54c6294045bfed733cc4b2020-11-24T21:34:57ZengElsevierNuclear Physics B0550-32132019-01-01938266297The spectrum of quantum-group-invariant transfer matricesRafael I. Nepomechie0Ana L. Retore1Physics Department, P.O. Box 248046, University of Miami, Coral Gables, FL 33124, USA; Corresponding author.Physics Department, P.O. Box 248046, University of Miami, Coral Gables, FL 33124, USA; Instituto de Física Teórica-UNESP, Rua Dr. Bento Teobaldo Ferraz 271, Bloco II 01140-070, São Paulo, BrazilIntegrable open quantum spin-chain transfer matrices constructed from trigonometric R-matrices associated to affine Lie algebras gˆ, and from certain K-matrices (reflection matrices) depending on a discrete parameter p, were recently considered in arXiv:1802.04864 and arXiv:1805.10144. It was shown there that these transfer matrices have quantum group symmetry corresponding to removing the pth node from the gˆ Dynkin diagram. Here we determine the spectrum of these transfer matrices by using analytical Bethe ansatz, and we determine the dependence of the corresponding Bethe equations on p. We propose formulas for the Dynkin labels of the Bethe states in terms of the numbers of Bethe roots of each type. We also briefly study how duality transformations are implemented on the Bethe ansatz solutions.http://www.sciencedirect.com/science/article/pii/S055032131830333X
collection DOAJ
language English
format Article
sources DOAJ
author Rafael I. Nepomechie
Ana L. Retore
spellingShingle Rafael I. Nepomechie
Ana L. Retore
The spectrum of quantum-group-invariant transfer matrices
Nuclear Physics B
author_facet Rafael I. Nepomechie
Ana L. Retore
author_sort Rafael I. Nepomechie
title The spectrum of quantum-group-invariant transfer matrices
title_short The spectrum of quantum-group-invariant transfer matrices
title_full The spectrum of quantum-group-invariant transfer matrices
title_fullStr The spectrum of quantum-group-invariant transfer matrices
title_full_unstemmed The spectrum of quantum-group-invariant transfer matrices
title_sort spectrum of quantum-group-invariant transfer matrices
publisher Elsevier
series Nuclear Physics B
issn 0550-3213
publishDate 2019-01-01
description Integrable open quantum spin-chain transfer matrices constructed from trigonometric R-matrices associated to affine Lie algebras gˆ, and from certain K-matrices (reflection matrices) depending on a discrete parameter p, were recently considered in arXiv:1802.04864 and arXiv:1805.10144. It was shown there that these transfer matrices have quantum group symmetry corresponding to removing the pth node from the gˆ Dynkin diagram. Here we determine the spectrum of these transfer matrices by using analytical Bethe ansatz, and we determine the dependence of the corresponding Bethe equations on p. We propose formulas for the Dynkin labels of the Bethe states in terms of the numbers of Bethe roots of each type. We also briefly study how duality transformations are implemented on the Bethe ansatz solutions.
url http://www.sciencedirect.com/science/article/pii/S055032131830333X
work_keys_str_mv AT rafaelinepomechie thespectrumofquantumgroupinvarianttransfermatrices
AT analretore thespectrumofquantumgroupinvarianttransfermatrices
AT rafaelinepomechie spectrumofquantumgroupinvarianttransfermatrices
AT analretore spectrumofquantumgroupinvarianttransfermatrices
_version_ 1725947228865953792