Simple Urban Simulation Atop Complicated Models: Multi-Scale Equation-Free Computing of Sprawl Using Geographic Automata

Reconciling competing desires to build urban models that can be simple and complicated is something of a grand challenge for urban simulation. It also prompts difficulties in many urban policy situations, such as urban sprawl, where simple, actionable ideas may need to be considered in the context o...

Full description

Bibliographic Details
Main Authors: Yu Zou, Roger Ghanem, Yannis Kevrekidis, Paul M. Torrens
Format: Article
Language:English
Published: MDPI AG 2013-07-01
Series:Entropy
Subjects:
Online Access:http://www.mdpi.com/1099-4300/15/7/2606
Description
Summary:Reconciling competing desires to build urban models that can be simple and complicated is something of a grand challenge for urban simulation. It also prompts difficulties in many urban policy situations, such as urban sprawl, where simple, actionable ideas may need to be considered in the context of the messily complex and complicated urban processes and phenomena that work within cities. In this paper, we present a novel architecture for achieving both simple and complicated realizations of urban sprawl in simulation. Fine-scale simulations of sprawl geography are run using geographic automata to represent the geographical drivers of sprawl in intricate detail and over fine resolutions of space and time. We use Equation-Free computing to deploy population as a coarse observable of sprawl, which can be leveraged to run automata-based models as short-burst experiments within a meta-simulation framework.
ISSN:1099-4300