A Non-Parametric Approach for the Activation Detection of Block Design fMRI Simulated Data Using Self-Organizing Maps and Support Vector Machine

Functional magnetic resonance imaging (fMRI) is a popular method to probe the functional organization of the brain using hemodynamic responses. In this method, volume images of the entire brain are obtained with a very good spatial resolution and low temporal resolution. However, they always suffer...

Full description

Bibliographic Details
Main Authors: Sheyda Bahrami, Mousa Shamsi
Format: Article
Language:English
Published: Wolters Kluwer Medknow Publications 2017-01-01
Series:Journal of Medical Signals and Sensors
Subjects:
Online Access:http://www.jmss.mui.ac.ir/article.asp?issn=2228-7477;year=2017;volume=7;issue=3;spage=153;epage=162;aulast=Bahrami
Description
Summary:Functional magnetic resonance imaging (fMRI) is a popular method to probe the functional organization of the brain using hemodynamic responses. In this method, volume images of the entire brain are obtained with a very good spatial resolution and low temporal resolution. However, they always suffer from high dimensionality in the face of classification algorithms. In this work, we combine a support vector machine (SVM) with a self-organizing map (SOM) for having a feature-based classification by using SVM. Then, a linear kernel SVM is used for detecting the active areas. Here, we use SOM for feature extracting and labeling the datasets. SOM has two major advances: (i) it reduces dimension of data sets for having less computational complexity and (ii) it is useful for identifying brain regions with small onset differences in hemodynamic responses. Our non-parametric model is compared with parametric and non-parametric methods. We use simulated fMRI data sets and block design inputs in this paper and consider the contrast to noise ratio (CNR) value equal to 0.6 for simulated datasets. fMRI simulated dataset has contrast 1–4% in active areas. The accuracy of our proposed method is 93.63% and the error rate is 6.37%.
ISSN:2228-7477