Proteomic Analysis of Copper-Binding Proteins in Excess Copper-Stressed Roots of Two Rice (Oryza sativa L.) Varieties with Different Cu Tolerances.

To better understand the mechanisms involved in the heavy metal stress response and tolerance in plants, a proteomic approach was used to investigate the differences in Cu-binding protein expression in Cu-tolerant and Cu-sensitive rice varieties. Cu-binding proteins from Cu-treated rice roots were s...

Full description

Bibliographic Details
Main Authors: Chen Chen, Yufeng Song, Kai Zhuang, Lu Li, Yan Xia, Zhenguo Shen
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2015-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC4412397?pdf=render
id doaj-04f4d3a5aed04a6ca5c5e2d93ce4ca58
record_format Article
spelling doaj-04f4d3a5aed04a6ca5c5e2d93ce4ca582020-11-25T01:53:42ZengPublic Library of Science (PLoS)PLoS ONE1932-62032015-01-01104e012536710.1371/journal.pone.0125367Proteomic Analysis of Copper-Binding Proteins in Excess Copper-Stressed Roots of Two Rice (Oryza sativa L.) Varieties with Different Cu Tolerances.Chen ChenYufeng SongKai ZhuangLu LiYan XiaZhenguo ShenTo better understand the mechanisms involved in the heavy metal stress response and tolerance in plants, a proteomic approach was used to investigate the differences in Cu-binding protein expression in Cu-tolerant and Cu-sensitive rice varieties. Cu-binding proteins from Cu-treated rice roots were separated using a new IMAC method in which an IDA-sepharose column was applied prior to the Cu-IMAC column to remove metal ions from protein samples. More than 300 protein spots were reproducibly detected in the 2D gel. Thirty-five protein spots exhibited changes greater than 1.5-fold in intensity compared to the control. Twenty-four proteins contained one or more of nine putative metal-binding motifs reported by Smith et al., and 19 proteins (spots) contained one to three of the top six motifs reported by Kung et al. The intensities of seven protein spots were increased in the Cu-tolerant variety B1139 compared to the Cu-sensitive variety B1195 (p<0.05) and six protein spots were markedly up-regulated in B1139, but not detectable in B1195. Four protein spots were significantly up-regulated in B1139, but unchanged in B1195 under Cu stress. In contrast, two protein spots were significantly down-regulated in B1195, but unchanged in B1139. These Cu-responsive proteins included those involved in antioxidant defense and detoxification (spots 5, 16, 21, 22, 28, 29 and 33), pathogenesis (spots 5, 16, 21, 22, 28, 29 and 33), regulation of gene transcription (spots 8 and 34), amino acid synthesis (spots 8 and 34), protein synthesis, modification, transport and degradation (spots 1, 2, 4, 10, 15, 19, 30, 31, 32 and 35), cell wall synthesis (spot 14), molecular signaling (spot 3), and salt stress (spots 7, 9 and 27); together with other proteins, such as a putative glyoxylate induced protein, proteins containing dimeric alpha-beta barrel domains, and adenosine kinase-like proteins. Our results suggest that these proteins, together with related physiological processes, play an important role in the detoxification of excess Cu and in maintaining cellular homeostasis.http://europepmc.org/articles/PMC4412397?pdf=render
collection DOAJ
language English
format Article
sources DOAJ
author Chen Chen
Yufeng Song
Kai Zhuang
Lu Li
Yan Xia
Zhenguo Shen
spellingShingle Chen Chen
Yufeng Song
Kai Zhuang
Lu Li
Yan Xia
Zhenguo Shen
Proteomic Analysis of Copper-Binding Proteins in Excess Copper-Stressed Roots of Two Rice (Oryza sativa L.) Varieties with Different Cu Tolerances.
PLoS ONE
author_facet Chen Chen
Yufeng Song
Kai Zhuang
Lu Li
Yan Xia
Zhenguo Shen
author_sort Chen Chen
title Proteomic Analysis of Copper-Binding Proteins in Excess Copper-Stressed Roots of Two Rice (Oryza sativa L.) Varieties with Different Cu Tolerances.
title_short Proteomic Analysis of Copper-Binding Proteins in Excess Copper-Stressed Roots of Two Rice (Oryza sativa L.) Varieties with Different Cu Tolerances.
title_full Proteomic Analysis of Copper-Binding Proteins in Excess Copper-Stressed Roots of Two Rice (Oryza sativa L.) Varieties with Different Cu Tolerances.
title_fullStr Proteomic Analysis of Copper-Binding Proteins in Excess Copper-Stressed Roots of Two Rice (Oryza sativa L.) Varieties with Different Cu Tolerances.
title_full_unstemmed Proteomic Analysis of Copper-Binding Proteins in Excess Copper-Stressed Roots of Two Rice (Oryza sativa L.) Varieties with Different Cu Tolerances.
title_sort proteomic analysis of copper-binding proteins in excess copper-stressed roots of two rice (oryza sativa l.) varieties with different cu tolerances.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2015-01-01
description To better understand the mechanisms involved in the heavy metal stress response and tolerance in plants, a proteomic approach was used to investigate the differences in Cu-binding protein expression in Cu-tolerant and Cu-sensitive rice varieties. Cu-binding proteins from Cu-treated rice roots were separated using a new IMAC method in which an IDA-sepharose column was applied prior to the Cu-IMAC column to remove metal ions from protein samples. More than 300 protein spots were reproducibly detected in the 2D gel. Thirty-five protein spots exhibited changes greater than 1.5-fold in intensity compared to the control. Twenty-four proteins contained one or more of nine putative metal-binding motifs reported by Smith et al., and 19 proteins (spots) contained one to three of the top six motifs reported by Kung et al. The intensities of seven protein spots were increased in the Cu-tolerant variety B1139 compared to the Cu-sensitive variety B1195 (p<0.05) and six protein spots were markedly up-regulated in B1139, but not detectable in B1195. Four protein spots were significantly up-regulated in B1139, but unchanged in B1195 under Cu stress. In contrast, two protein spots were significantly down-regulated in B1195, but unchanged in B1139. These Cu-responsive proteins included those involved in antioxidant defense and detoxification (spots 5, 16, 21, 22, 28, 29 and 33), pathogenesis (spots 5, 16, 21, 22, 28, 29 and 33), regulation of gene transcription (spots 8 and 34), amino acid synthesis (spots 8 and 34), protein synthesis, modification, transport and degradation (spots 1, 2, 4, 10, 15, 19, 30, 31, 32 and 35), cell wall synthesis (spot 14), molecular signaling (spot 3), and salt stress (spots 7, 9 and 27); together with other proteins, such as a putative glyoxylate induced protein, proteins containing dimeric alpha-beta barrel domains, and adenosine kinase-like proteins. Our results suggest that these proteins, together with related physiological processes, play an important role in the detoxification of excess Cu and in maintaining cellular homeostasis.
url http://europepmc.org/articles/PMC4412397?pdf=render
work_keys_str_mv AT chenchen proteomicanalysisofcopperbindingproteinsinexcesscopperstressedrootsoftworiceoryzasativalvarietieswithdifferentcutolerances
AT yufengsong proteomicanalysisofcopperbindingproteinsinexcesscopperstressedrootsoftworiceoryzasativalvarietieswithdifferentcutolerances
AT kaizhuang proteomicanalysisofcopperbindingproteinsinexcesscopperstressedrootsoftworiceoryzasativalvarietieswithdifferentcutolerances
AT luli proteomicanalysisofcopperbindingproteinsinexcesscopperstressedrootsoftworiceoryzasativalvarietieswithdifferentcutolerances
AT yanxia proteomicanalysisofcopperbindingproteinsinexcesscopperstressedrootsoftworiceoryzasativalvarietieswithdifferentcutolerances
AT zhenguoshen proteomicanalysisofcopperbindingproteinsinexcesscopperstressedrootsoftworiceoryzasativalvarietieswithdifferentcutolerances
_version_ 1724989591342022656