Augmented curation of clinical notes from a massive EHR system reveals symptoms of impending COVID-19 diagnosis
Understanding temporal dynamics of COVID-19 symptoms could provide fine-grained resolution to guide clinical decision-making. Here, we use deep neural networks over an institution-wide platform for the augmented curation of clinical notes from 77,167 patients subjected to COVID-19 PCR testing. By co...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
eLife Sciences Publications Ltd
2020-07-01
|
Series: | eLife |
Subjects: | |
Online Access: | https://elifesciences.org/articles/58227 |
id |
doaj-04e4d0309faa47b58af6a8288fb59547 |
---|---|
record_format |
Article |
spelling |
doaj-04e4d0309faa47b58af6a8288fb595472021-05-05T21:17:21ZengeLife Sciences Publications LtdeLife2050-084X2020-07-01910.7554/eLife.58227Augmented curation of clinical notes from a massive EHR system reveals symptoms of impending COVID-19 diagnosisTyler Wagner0FNU Shweta1https://orcid.org/0000-0001-6634-6272Karthik Murugadoss2Samir Awasthi3AJ Venkatakrishnan4https://orcid.org/0000-0003-2819-3214Sairam Bade5Arjun Puranik6Martin Kang7Brian W Pickering8John C O'Horo9Philippe R Bauer10Raymund R Razonable11Paschalis Vergidis12Zelalem Temesgen13Stacey Rizza14Maryam Mahmood15Walter R Wilson16Douglas Challener17https://orcid.org/0000-0002-6964-9639Praveen Anand18https://orcid.org/0000-0002-2478-7042Matt Liebers19Zainab Doctor20Eli Silvert21Hugo Solomon22Akash Anand23Rakesh Barve24Gregory Gores25Amy W Williams26William G Morice II27John Halamka28Andrew Badley29Venky Soundararajan30https://orcid.org/0000-0001-7434-9211nference, Cambridge, United StatesMayo Clinic, Rochester, United Statesnference, Cambridge, United Statesnference, Cambridge, United Statesnference, Cambridge, United Statesnference Labs, Bangalore, Indianference, Cambridge, United Statesnference, Cambridge, United StatesMayo Clinic, Rochester, United StatesMayo Clinic, Rochester, United StatesMayo Clinic, Rochester, United StatesMayo Clinic, Rochester, United StatesMayo Clinic, Rochester, United StatesMayo Clinic, Rochester, United StatesMayo Clinic, Rochester, United StatesMayo Clinic, Rochester, United StatesMayo Clinic, Rochester, United StatesMayo Clinic, Rochester, United Statesnference Labs, Bangalore, Indianference, Cambridge, United Statesnference, Cambridge, United Statesnference, Cambridge, United Statesnference, Cambridge, United Statesnference Labs, Bangalore, Indianference Labs, Bangalore, IndiaMayo Clinic, Rochester, United StatesMayo Clinic, Rochester, United StatesMayo Clinic, Rochester, United States; Mayo Clinic Laboratories, Rochester, United StatesMayo Clinic, Rochester, United StatesMayo Clinic, Rochester, United Statesnference, Cambridge, United StatesUnderstanding temporal dynamics of COVID-19 symptoms could provide fine-grained resolution to guide clinical decision-making. Here, we use deep neural networks over an institution-wide platform for the augmented curation of clinical notes from 77,167 patients subjected to COVID-19 PCR testing. By contrasting Electronic Health Record (EHR)-derived symptoms of COVID-19-positive (COVIDpos; n = 2,317) versus COVID-19-negative (COVIDneg; n = 74,850) patients for the week preceding the PCR testing date, we identify anosmia/dysgeusia (27.1-fold), fever/chills (2.6-fold), respiratory difficulty (2.2-fold), cough (2.2-fold), myalgia/arthralgia (2-fold), and diarrhea (1.4-fold) as significantly amplified in COVIDpos over COVIDneg patients. The combination of cough and fever/chills has 4.2-fold amplification in COVIDpos patients during the week prior to PCR testing, in addition to anosmia/dysgeusia, constitutes the earliest EHR-derived signature of COVID-19. This study introduces an Augmented Intelligence platform for the real-time synthesis of institutional biomedical knowledge. The platform holds tremendous potential for scaling up curation throughput, thus enabling EHR-powered early disease diagnosis.https://elifesciences.org/articles/58227electronic health recordneural networksmachine learningartificial intelligenceCOVID-19SARS-CoV-2 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Tyler Wagner FNU Shweta Karthik Murugadoss Samir Awasthi AJ Venkatakrishnan Sairam Bade Arjun Puranik Martin Kang Brian W Pickering John C O'Horo Philippe R Bauer Raymund R Razonable Paschalis Vergidis Zelalem Temesgen Stacey Rizza Maryam Mahmood Walter R Wilson Douglas Challener Praveen Anand Matt Liebers Zainab Doctor Eli Silvert Hugo Solomon Akash Anand Rakesh Barve Gregory Gores Amy W Williams William G Morice II John Halamka Andrew Badley Venky Soundararajan |
spellingShingle |
Tyler Wagner FNU Shweta Karthik Murugadoss Samir Awasthi AJ Venkatakrishnan Sairam Bade Arjun Puranik Martin Kang Brian W Pickering John C O'Horo Philippe R Bauer Raymund R Razonable Paschalis Vergidis Zelalem Temesgen Stacey Rizza Maryam Mahmood Walter R Wilson Douglas Challener Praveen Anand Matt Liebers Zainab Doctor Eli Silvert Hugo Solomon Akash Anand Rakesh Barve Gregory Gores Amy W Williams William G Morice II John Halamka Andrew Badley Venky Soundararajan Augmented curation of clinical notes from a massive EHR system reveals symptoms of impending COVID-19 diagnosis eLife electronic health record neural networks machine learning artificial intelligence COVID-19 SARS-CoV-2 |
author_facet |
Tyler Wagner FNU Shweta Karthik Murugadoss Samir Awasthi AJ Venkatakrishnan Sairam Bade Arjun Puranik Martin Kang Brian W Pickering John C O'Horo Philippe R Bauer Raymund R Razonable Paschalis Vergidis Zelalem Temesgen Stacey Rizza Maryam Mahmood Walter R Wilson Douglas Challener Praveen Anand Matt Liebers Zainab Doctor Eli Silvert Hugo Solomon Akash Anand Rakesh Barve Gregory Gores Amy W Williams William G Morice II John Halamka Andrew Badley Venky Soundararajan |
author_sort |
Tyler Wagner |
title |
Augmented curation of clinical notes from a massive EHR system reveals symptoms of impending COVID-19 diagnosis |
title_short |
Augmented curation of clinical notes from a massive EHR system reveals symptoms of impending COVID-19 diagnosis |
title_full |
Augmented curation of clinical notes from a massive EHR system reveals symptoms of impending COVID-19 diagnosis |
title_fullStr |
Augmented curation of clinical notes from a massive EHR system reveals symptoms of impending COVID-19 diagnosis |
title_full_unstemmed |
Augmented curation of clinical notes from a massive EHR system reveals symptoms of impending COVID-19 diagnosis |
title_sort |
augmented curation of clinical notes from a massive ehr system reveals symptoms of impending covid-19 diagnosis |
publisher |
eLife Sciences Publications Ltd |
series |
eLife |
issn |
2050-084X |
publishDate |
2020-07-01 |
description |
Understanding temporal dynamics of COVID-19 symptoms could provide fine-grained resolution to guide clinical decision-making. Here, we use deep neural networks over an institution-wide platform for the augmented curation of clinical notes from 77,167 patients subjected to COVID-19 PCR testing. By contrasting Electronic Health Record (EHR)-derived symptoms of COVID-19-positive (COVIDpos; n = 2,317) versus COVID-19-negative (COVIDneg; n = 74,850) patients for the week preceding the PCR testing date, we identify anosmia/dysgeusia (27.1-fold), fever/chills (2.6-fold), respiratory difficulty (2.2-fold), cough (2.2-fold), myalgia/arthralgia (2-fold), and diarrhea (1.4-fold) as significantly amplified in COVIDpos over COVIDneg patients. The combination of cough and fever/chills has 4.2-fold amplification in COVIDpos patients during the week prior to PCR testing, in addition to anosmia/dysgeusia, constitutes the earliest EHR-derived signature of COVID-19. This study introduces an Augmented Intelligence platform for the real-time synthesis of institutional biomedical knowledge. The platform holds tremendous potential for scaling up curation throughput, thus enabling EHR-powered early disease diagnosis. |
topic |
electronic health record neural networks machine learning artificial intelligence COVID-19 SARS-CoV-2 |
url |
https://elifesciences.org/articles/58227 |
work_keys_str_mv |
AT tylerwagner augmentedcurationofclinicalnotesfromamassiveehrsystemrevealssymptomsofimpendingcovid19diagnosis AT fnushweta augmentedcurationofclinicalnotesfromamassiveehrsystemrevealssymptomsofimpendingcovid19diagnosis AT karthikmurugadoss augmentedcurationofclinicalnotesfromamassiveehrsystemrevealssymptomsofimpendingcovid19diagnosis AT samirawasthi augmentedcurationofclinicalnotesfromamassiveehrsystemrevealssymptomsofimpendingcovid19diagnosis AT ajvenkatakrishnan augmentedcurationofclinicalnotesfromamassiveehrsystemrevealssymptomsofimpendingcovid19diagnosis AT sairambade augmentedcurationofclinicalnotesfromamassiveehrsystemrevealssymptomsofimpendingcovid19diagnosis AT arjunpuranik augmentedcurationofclinicalnotesfromamassiveehrsystemrevealssymptomsofimpendingcovid19diagnosis AT martinkang augmentedcurationofclinicalnotesfromamassiveehrsystemrevealssymptomsofimpendingcovid19diagnosis AT brianwpickering augmentedcurationofclinicalnotesfromamassiveehrsystemrevealssymptomsofimpendingcovid19diagnosis AT johncohoro augmentedcurationofclinicalnotesfromamassiveehrsystemrevealssymptomsofimpendingcovid19diagnosis AT philipperbauer augmentedcurationofclinicalnotesfromamassiveehrsystemrevealssymptomsofimpendingcovid19diagnosis AT raymundrrazonable augmentedcurationofclinicalnotesfromamassiveehrsystemrevealssymptomsofimpendingcovid19diagnosis AT paschalisvergidis augmentedcurationofclinicalnotesfromamassiveehrsystemrevealssymptomsofimpendingcovid19diagnosis AT zelalemtemesgen augmentedcurationofclinicalnotesfromamassiveehrsystemrevealssymptomsofimpendingcovid19diagnosis AT staceyrizza augmentedcurationofclinicalnotesfromamassiveehrsystemrevealssymptomsofimpendingcovid19diagnosis AT maryammahmood augmentedcurationofclinicalnotesfromamassiveehrsystemrevealssymptomsofimpendingcovid19diagnosis AT walterrwilson augmentedcurationofclinicalnotesfromamassiveehrsystemrevealssymptomsofimpendingcovid19diagnosis AT douglaschallener augmentedcurationofclinicalnotesfromamassiveehrsystemrevealssymptomsofimpendingcovid19diagnosis AT praveenanand augmentedcurationofclinicalnotesfromamassiveehrsystemrevealssymptomsofimpendingcovid19diagnosis AT mattliebers augmentedcurationofclinicalnotesfromamassiveehrsystemrevealssymptomsofimpendingcovid19diagnosis AT zainabdoctor augmentedcurationofclinicalnotesfromamassiveehrsystemrevealssymptomsofimpendingcovid19diagnosis AT elisilvert augmentedcurationofclinicalnotesfromamassiveehrsystemrevealssymptomsofimpendingcovid19diagnosis AT hugosolomon augmentedcurationofclinicalnotesfromamassiveehrsystemrevealssymptomsofimpendingcovid19diagnosis AT akashanand augmentedcurationofclinicalnotesfromamassiveehrsystemrevealssymptomsofimpendingcovid19diagnosis AT rakeshbarve augmentedcurationofclinicalnotesfromamassiveehrsystemrevealssymptomsofimpendingcovid19diagnosis AT gregorygores augmentedcurationofclinicalnotesfromamassiveehrsystemrevealssymptomsofimpendingcovid19diagnosis AT amywwilliams augmentedcurationofclinicalnotesfromamassiveehrsystemrevealssymptomsofimpendingcovid19diagnosis AT williamgmoriceii augmentedcurationofclinicalnotesfromamassiveehrsystemrevealssymptomsofimpendingcovid19diagnosis AT johnhalamka augmentedcurationofclinicalnotesfromamassiveehrsystemrevealssymptomsofimpendingcovid19diagnosis AT andrewbadley augmentedcurationofclinicalnotesfromamassiveehrsystemrevealssymptomsofimpendingcovid19diagnosis AT venkysoundararajan augmentedcurationofclinicalnotesfromamassiveehrsystemrevealssymptomsofimpendingcovid19diagnosis |
_version_ |
1721458201335955456 |