Filling the Void in Archaeological Excavations: 2D Point Clouds to 3D Volumes

3D data captured from archaeological excavations are frequently left to speak for themselves. 3D models of objects are uploaded to online viewing platforms, the tops or bottoms of surfaces are visualised in 2.5D, or both are reduced to 2D representations. Representations of excavation units, in part...

Full description

Bibliographic Details
Main Authors: Nobles Gary R., Roosevelt Christopher H.
Format: Article
Language:English
Published: De Gruyter 2021-07-01
Series:Open Archaeology
Subjects:
Online Access:https://doi.org/10.1515/opar-2020-0149
Description
Summary:3D data captured from archaeological excavations are frequently left to speak for themselves. 3D models of objects are uploaded to online viewing platforms, the tops or bottoms of surfaces are visualised in 2.5D, or both are reduced to 2D representations. Representations of excavation units, in particular, often remain incompletely processed as raw surface outputs, unable to be considered individual entities that represent the individual, volumetric units of excavation. Visualisations of such surfaces, whether as point clouds or meshes, are commonly viewed as an end result in and of themselves, when they could be considered the beginning of a fully volumetric way of recording and understanding the 3D archaeological record. In describing the creation of an archaeologically focused recording routine and a 3D-focused data processing workflow, this article provides the means to fill the void between excavation-unit surfaces, thereby producing an individual volumetric entity that corresponds to each excavation unit. Drawing on datasets from the Kaymakçı Archaeological Project (KAP) in western Turkey, the article shows the potential for programmatic creation of volumetric contextual units from 2D point cloud datasets, opening a world of possibilities and challenges for the development of a truly 3D archaeological practice.
ISSN:2300-6560