Sex estimation of the pelvis by deep learning of two-dimensional depth images generated from homologous models of three-dimensional computed tomography images
The utility of convolutional neural networks (CNNs) for sex estimation of the pelvis was evaluated using depth images generated from reconstructed three-dimensional (3D) computed tomography images. The 3D volume data were normalized by a homologous modeling technique to create polygon data with iden...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2020-12-01
|
Series: | Forensic Science International: Reports |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2665910720300785 |
Summary: | The utility of convolutional neural networks (CNNs) for sex estimation of the pelvis was evaluated using depth images generated from reconstructed three-dimensional (3D) computed tomography images. The 3D volume data were normalized by a homologous modeling technique to create polygon data with identical topology, then captured images for learning and testing. The neural networks were trained via transfer learning. As a result, a correct assignment rate >90% was obtained in most trials. The frontal view of the pelvis with 60-degree inclination achieved the best results. Selecting samples close to the average images of the sex was effective for training. |
---|---|
ISSN: | 2665-9107 |