Burnup analysis for HTR-10 reactor core loaded with uranium and thorium oxide
We used MCNP6 computer code to model HTR-10 core reactor. We used two types of fuel; UO2 and (Th+Pu)O2 mixture. We determined the critical height at which the reactor approached criticality in both two cases. The neutronic and burnup parameters were investigated. The results indicated that the core...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2020-04-01
|
Series: | Nuclear Engineering and Technology |
Online Access: | http://www.sciencedirect.com/science/article/pii/S1738573319303043 |
Summary: | We used MCNP6 computer code to model HTR-10 core reactor. We used two types of fuel; UO2 and (Th+Pu)O2 mixture. We determined the critical height at which the reactor approached criticality in both two cases. The neutronic and burnup parameters were investigated. The results indicated that the core fueled with mixed (Th+Pu)O2, achieved about 24% higher fuel cycle length than the UO2 case. It also enhanced safeguard security by burning Pu isotopes. The results were compared with previously published papers and good agreements were found. Keywords: Pebble-bed, HTR-10, Burnup, Thorium based fuel |
---|---|
ISSN: | 1738-5733 |