Synthesis, structure and electrical properties of Li+-doped pyrochlore Gd2Zr2O7

The pyrochlore Gd1.55Li0.45Zr2O6.55 was prepared by the solution and solid-state methods. The introduction of lithium in the Gd-sublattice led to decrease in the lattice parameter a = 10.4830(8) Å in comparison with Gd2Zr2O7 (a =10.5346(2) Å). Monitoring of the lithium content in the sample during h...

Full description

Bibliographic Details
Main Authors: Irina A. Anokhina, Irina E. Animitsa, Anastasia F. Buzina, Vladimir I. Voronin, Vladimir B. Vykhodets, Tatyana E. Kurennykh, Yuri P. Zaikov
Format: Article
Language:English
Published: Uralʹskij federalʹnyj universitet imeni pervogo Prezidenta Rossii B.N. Elʹcina 2020-05-01
Series:Chimica Techno Acta
Subjects:
Online Access:https://journals.urfu.ru/index.php/chimtech/article/view/4444
Description
Summary:The pyrochlore Gd1.55Li0.45Zr2O6.55 was prepared by the solution and solid-state methods. The introduction of lithium in the Gd-sublattice led to decrease in the lattice parameter a = 10.4830(8) Å in comparison with Gd2Zr2O7 (a =10.5346(2) Å). Monitoring of the lithium content in the sample during heat treatments showed a loss of lithium at temperatures above 1100 °C, so, to maintain the stoichiometry of lithium the low temperature sintering methods are required. The sample Gd1.55Li0.45Zr2O6.55 exhibited a predominant oxygen-ion transport over a wide range of temperatures.  Although doping did not lead to an increase in the oxygen-ion conductivity compared to Gd2Zr2O7, it caused the suppression of the hole conductivity.
ISSN:2409-5613
2411-1414