Phenol Adsorption on Nitrogen-enriched Activated Carbon Prepared from Bamboo Residues

Nitrogen-enriched activated carbons prepared from bamboo residues were characterized by means of BET, XPS, and elemental analysis. Then adsorption experiments were carried out to study the effects of various physicochemical parameters such as contact time, temperature, pH, and initial concentration....

Full description

Bibliographic Details
Main Authors: Ji Zhang, Xiao-Juan Jin, Jian-Min Gao, Xiu-Dong Zhang
Format: Article
Language:English
Published: North Carolina State University 2013-12-01
Series:BioResources
Subjects:
Online Access:http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_09_1_969_Zhang_Phenol_Adsorption_Bamboo
Description
Summary:Nitrogen-enriched activated carbons prepared from bamboo residues were characterized by means of BET, XPS, and elemental analysis. Then adsorption experiments were carried out to study the effects of various physicochemical parameters such as contact time, temperature, pH, and initial concentration. Adsorption equilibrium was achieved within 120 min at a phenol concentration of 250 mg/L. When the pH was 4 and 0.1 g of the carbon absorbent and 100 mL of phenol solution at 250 mg/L were used, the phenol adsorption of the ACs with melamine and urea modifications were 219.09 mg/g and 214.45 mg/g, respectively. Both were greater than the capacity of unmodified AC, which was 163.82 mg/g. The Langmuir isotherm adsorption equation well described the experimental adsorption isotherms. The adsorption kinetics was well explained by pseudo-second-order kinetics rather than the pseudo-first-order. In conclusion, the nitrogen-enriched activated carbon proposed as adsorbents of the phenol wastewater were shown to be effective, which also means that bamboo residues have promise as activated carbon precursors for liquid phase adsorbents for environmental protection.
ISSN:1930-2126
1930-2126