A large scale analysis of information-theoretic network complexity measures using chemical structures.
This paper aims to investigate information-theoretic network complexity measures which have already been intensely used in mathematical- and medicinal chemistry including drug design. Numerous such measures have been developed so far but many of them lack a meaningful interpretation, e.g., we want t...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2009-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC2790089?pdf=render |
id |
doaj-047ebcdf0f064226bce2b17b313e51f6 |
---|---|
record_format |
Article |
spelling |
doaj-047ebcdf0f064226bce2b17b313e51f62020-11-24T21:49:06ZengPublic Library of Science (PLoS)PLoS ONE1932-62032009-01-01412e805710.1371/journal.pone.0008057A large scale analysis of information-theoretic network complexity measures using chemical structures.Matthias DehmerNicola BarbariniKurt VarmuzaArmin GraberThis paper aims to investigate information-theoretic network complexity measures which have already been intensely used in mathematical- and medicinal chemistry including drug design. Numerous such measures have been developed so far but many of them lack a meaningful interpretation, e.g., we want to examine which kind of structural information they detect. Therefore, our main contribution is to shed light on the relatedness between some selected information measures for graphs by performing a large scale analysis using chemical networks. Starting from several sets containing real and synthetic chemical structures represented by graphs, we study the relatedness between a classical (partition-based) complexity measure called the topological information content of a graph and some others inferred by a different paradigm leading to partition-independent measures. Moreover, we evaluate the uniqueness of network complexity measures numerically. Generally, a high uniqueness is an important and desirable property when designing novel topological descriptors having the potential to be applied to large chemical databases.http://europepmc.org/articles/PMC2790089?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Matthias Dehmer Nicola Barbarini Kurt Varmuza Armin Graber |
spellingShingle |
Matthias Dehmer Nicola Barbarini Kurt Varmuza Armin Graber A large scale analysis of information-theoretic network complexity measures using chemical structures. PLoS ONE |
author_facet |
Matthias Dehmer Nicola Barbarini Kurt Varmuza Armin Graber |
author_sort |
Matthias Dehmer |
title |
A large scale analysis of information-theoretic network complexity measures using chemical structures. |
title_short |
A large scale analysis of information-theoretic network complexity measures using chemical structures. |
title_full |
A large scale analysis of information-theoretic network complexity measures using chemical structures. |
title_fullStr |
A large scale analysis of information-theoretic network complexity measures using chemical structures. |
title_full_unstemmed |
A large scale analysis of information-theoretic network complexity measures using chemical structures. |
title_sort |
large scale analysis of information-theoretic network complexity measures using chemical structures. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2009-01-01 |
description |
This paper aims to investigate information-theoretic network complexity measures which have already been intensely used in mathematical- and medicinal chemistry including drug design. Numerous such measures have been developed so far but many of them lack a meaningful interpretation, e.g., we want to examine which kind of structural information they detect. Therefore, our main contribution is to shed light on the relatedness between some selected information measures for graphs by performing a large scale analysis using chemical networks. Starting from several sets containing real and synthetic chemical structures represented by graphs, we study the relatedness between a classical (partition-based) complexity measure called the topological information content of a graph and some others inferred by a different paradigm leading to partition-independent measures. Moreover, we evaluate the uniqueness of network complexity measures numerically. Generally, a high uniqueness is an important and desirable property when designing novel topological descriptors having the potential to be applied to large chemical databases. |
url |
http://europepmc.org/articles/PMC2790089?pdf=render |
work_keys_str_mv |
AT matthiasdehmer alargescaleanalysisofinformationtheoreticnetworkcomplexitymeasuresusingchemicalstructures AT nicolabarbarini alargescaleanalysisofinformationtheoreticnetworkcomplexitymeasuresusingchemicalstructures AT kurtvarmuza alargescaleanalysisofinformationtheoreticnetworkcomplexitymeasuresusingchemicalstructures AT armingraber alargescaleanalysisofinformationtheoreticnetworkcomplexitymeasuresusingchemicalstructures AT matthiasdehmer largescaleanalysisofinformationtheoreticnetworkcomplexitymeasuresusingchemicalstructures AT nicolabarbarini largescaleanalysisofinformationtheoreticnetworkcomplexitymeasuresusingchemicalstructures AT kurtvarmuza largescaleanalysisofinformationtheoreticnetworkcomplexitymeasuresusingchemicalstructures AT armingraber largescaleanalysisofinformationtheoreticnetworkcomplexitymeasuresusingchemicalstructures |
_version_ |
1725889573715705856 |