The Numerical Simulation of UAV's Landing in Ship Airwake

In order to investigate the influence of ship airwake on aerodynamic characteristics of the carrier-based aircraft, UAV's landings in different winds over deck were simulated by Overset Mesh method. Firstly, mesh factors, steady and unsteady methods were compared based on single aircraft carrie...

Full description

Bibliographic Details
Format: Article
Language:zho
Published: The Northwestern Polytechnical University 2019-02-01
Series:Xibei Gongye Daxue Xuebao
Subjects:
uav
Online Access:https://www.jnwpu.org/articles/jnwpu/full_html/2019/01/jnwpu2019371p186/jnwpu2019371p186.html
Description
Summary:In order to investigate the influence of ship airwake on aerodynamic characteristics of the carrier-based aircraft, UAV's landings in different winds over deck were simulated by Overset Mesh method. Firstly, mesh factors, steady and unsteady methods were compared based on single aircraft carrier. The results showed that the boundary layer mesh around ship didn't show obvious influence for our simulation, and the calculation results between the steady and unsteady time average showed a similar trend. Then, aircraft carrier's flow fields in three wind directions were analyzed, and ship airwake variations with different direction winds over deck were concluded as well. Next, the reliability of Overset Mesh was verified though single UAV's landing simulation. Finally, the coupled flow fields of UAV/ship were studied. The calculation results indicated that aircraft was always in a low dynamic pressure condition, the lift and pitching moment of UAV had apparent changes in landing. Meanwhile, the aerodynamic fluctuations of UAV also revealed differences in different wind directions. The simulation results can be regarded as a reference for the safety assessment of carrier-based aircraft's landing and its control in the future.
ISSN:1000-2758
2609-7125