Preclinical safety evaluation of drone brood homogenate and justification of pharmacological action

The problem of studying the metabolic syndrome, as well as its integration into other pathological processes, despite large-scale research, remains relevant. The complexity of the interaction of different links in pathogenesis requires scientists to find new tools and methods for both diagnosis and...

Full description

Bibliographic Details
Main Authors: Bohdana Pavliuk, Iryna Stechyshyn, Mariana Chubka, Taras Hroshovyi
Format: Article
Language:English
Published: Pensoft Publishers 2021-10-01
Series:Pharmacia
Online Access:https://pharmacia.pensoft.net/article/70678/download/pdf/
Description
Summary:The problem of studying the metabolic syndrome, as well as its integration into other pathological processes, despite large-scale research, remains relevant. The complexity of the interaction of different links in pathogenesis requires scientists to find new tools and methods for both diagnosis and treatment. Drone brood homogenate, which is a multifactorial pharmacological agent in terms of chemical composition, seems to be promising to study for today. And the lack of contraindications and a wide age range makes it an excellent object of research. The current study evaluated the pharmacological aspects of safety: acute toxicity, effects on the functional and motor activity of the gastrointestinal tract, as well as local irritation of the gastric mucosa, the secretory function of the stomach. All experiments were performed according to the classical methods. The specific pharmacological activity of the drone brood homogenate was determined in comparison with metformin in the experimental fructose metabolic syndrome. Animals obtained from the Vivarium of I.Horbachevsky Ternopil National Medical University were used to implement the set goals. Working with animals was met all bioethical requirements. The study found that the lyophilized drone brood homogenate does not have a local irritant effect and does not cause ulcers on the surface of the gastric mucosa, does not affect the secretory function of the stomach and motor-evacuatory activity of the gastrointestinal tract and is a low-toxic substance, indicating the possibility of its long-term safe use. As expected, glucose, insulin, and HOMA index were significantly increased in animals that were simulated metabolic syndrome. The use of drone brood homogenate by animals contributed to a relatively positive effect on selected indicators of the metabolic syndrome. Accordingly, drone brood homogenate is a promising active pharmaceutical ingredient for the normalization of biochemical disorders in metabolic syndrome.
ISSN:2603-557X