LDPE/HDPE/Clay Nanocomposites: Effects of Compatibilizer on the Structure and Dielectric Response
PE/clay nanocomposites were prepared by mixing a commercially available premixed polyethylene/O-MMT masterbatch into a polyethylene blend matrix containing 80 wt% low-density polyethylene and 20 wt% high-density polyethylene with and without anhydride modified polyethylene (PE-MA) as the compatibili...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2013-01-01
|
Series: | Journal of Nanotechnology |
Online Access: | http://dx.doi.org/10.1155/2013/138457 |
Summary: | PE/clay nanocomposites were prepared by mixing a commercially available premixed polyethylene/O-MMT masterbatch into a polyethylene blend matrix containing 80 wt% low-density polyethylene and 20 wt% high-density polyethylene with and without anhydride modified polyethylene (PE-MA) as the compatibilizer using a corotating twin-screw extruder. In this study, the effect of nanoclay and compatibilizer on the structure and dielectric response of PE/clay nanocomposites has been investigated. The microstructure of PE/clay nanocomposites was characterized using wide-angle X-ray diffraction (WAXD) and a scanning electron microscope (SEM). Thermal properties were examined using differential scanning calorimetry (DSC). The dielectric response of neat PE was compared with that of PE/clay nanocomposite with and without the compatibilizer. The XRD and SEM results showed that the PE/O-MMT nanocomposite with the PE-MA compatibilizer was better dispersed. In the nanocomposite materials, two relaxation modes are detected in the dielectric losses. The first relaxation is due to a Maxwell-Wagner-Sillars interfacial polarization, and the second relaxation can be related to dipolar polarization. A relationship between the degree of dispersion and the relaxation rate fmax of Maxwell-Wagner-Sillars was found and discussed. |
---|---|
ISSN: | 1687-9503 1687-9511 |