Classical solutions of mixed problems for quasilinear first order PFDEs on a cylindrical domain
We abandon the setting of the domain as a Cartesian product of real intervals, customary for first order PFDEs (partial functional differential equations) with initial boundary conditions. We give a new set of conditions on the possibly unbounded domain \(\Omega\) with Lipschitz differentiable bound...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
AGH Univeristy of Science and Technology Press
2014-01-01
|
Series: | Opuscula Mathematica |
Subjects: | |
Online Access: | http://www.opuscula.agh.edu.pl/vol34/2/art/opuscula_math_3418.pdf |
id |
doaj-041fe2b4be674bd28306324b2708ceae |
---|---|
record_format |
Article |
spelling |
doaj-041fe2b4be674bd28306324b2708ceae2020-11-24T23:49:53ZengAGH Univeristy of Science and Technology PressOpuscula Mathematica1232-92742014-01-01342291310http://dx.doi.org/10.7494/OpMath.2014.34.2.2913418Classical solutions of mixed problems for quasilinear first order PFDEs on a cylindrical domainWojciech Czernous0University of Warmia and Mazury, Faculty of Mathematics and Computer Science, Sloneczna 54, 10-710 Olsztyn, PolandWe abandon the setting of the domain as a Cartesian product of real intervals, customary for first order PFDEs (partial functional differential equations) with initial boundary conditions. We give a new set of conditions on the possibly unbounded domain \(\Omega\) with Lipschitz differentiable boundary. Well-posedness is then reliant on a variant of the normal vector condition. There is a neighbourhood of \(\partial\Omega\) with the property that if a characteristic trajectory has a point therein, then its every earlier point lies there as well. With local assumptions on coefficients and on the free term, we prove existence and Lipschitz dependence on data of classical solutions on \((0,c)\times\Omega\) to the initial boundary value problem, for small \(c\). Regularity of solutions matches this domain, and the proof uses the Banach fixed-point theorem. Our general model of functional dependence covers problems with deviating arguments and integro-differential equations.http://www.opuscula.agh.edu.pl/vol34/2/art/opuscula_math_3418.pdfpartial functional differential equationsclassical solutionslocal existencecharacteristicscylindrical domaina priori estimates |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Wojciech Czernous |
spellingShingle |
Wojciech Czernous Classical solutions of mixed problems for quasilinear first order PFDEs on a cylindrical domain Opuscula Mathematica partial functional differential equations classical solutions local existence characteristics cylindrical domain a priori estimates |
author_facet |
Wojciech Czernous |
author_sort |
Wojciech Czernous |
title |
Classical solutions of mixed problems for quasilinear first order PFDEs on a cylindrical domain |
title_short |
Classical solutions of mixed problems for quasilinear first order PFDEs on a cylindrical domain |
title_full |
Classical solutions of mixed problems for quasilinear first order PFDEs on a cylindrical domain |
title_fullStr |
Classical solutions of mixed problems for quasilinear first order PFDEs on a cylindrical domain |
title_full_unstemmed |
Classical solutions of mixed problems for quasilinear first order PFDEs on a cylindrical domain |
title_sort |
classical solutions of mixed problems for quasilinear first order pfdes on a cylindrical domain |
publisher |
AGH Univeristy of Science and Technology Press |
series |
Opuscula Mathematica |
issn |
1232-9274 |
publishDate |
2014-01-01 |
description |
We abandon the setting of the domain as a Cartesian product of real intervals, customary for first order PFDEs (partial functional differential equations) with initial boundary conditions. We give a new set of conditions on the possibly unbounded domain \(\Omega\) with Lipschitz differentiable boundary. Well-posedness is then reliant on a variant of the normal vector condition. There is a neighbourhood of \(\partial\Omega\) with the property that if a characteristic trajectory has a point therein, then its every earlier point lies there as well. With local assumptions on coefficients and on the free term, we prove existence and Lipschitz dependence on data of classical solutions on \((0,c)\times\Omega\) to the initial boundary value problem, for small \(c\). Regularity of solutions matches this domain, and the proof uses the Banach fixed-point theorem. Our general model of functional dependence covers problems with deviating arguments and integro-differential equations. |
topic |
partial functional differential equations classical solutions local existence characteristics cylindrical domain a priori estimates |
url |
http://www.opuscula.agh.edu.pl/vol34/2/art/opuscula_math_3418.pdf |
work_keys_str_mv |
AT wojciechczernous classicalsolutionsofmixedproblemsforquasilinearfirstorderpfdesonacylindricaldomain |
_version_ |
1725481017151586304 |