A Two-Component Regulatory System Impacts Extracellular Membrane-Derived Vesicle Production in Group A Streptococcus
Export of macromolecules via extracellular membrane-derived vesicles (MVs) plays an important role in the biology of Gram-negative bacteria. Gram-positive bacteria have also recently been reported to produce MVs; however, the composition and mechanisms governing vesiculogenesis in Gram-positive bact...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
American Society for Microbiology
2016-11-01
|
Series: | mBio |
Online Access: | http://mbio.asm.org/cgi/content/full/7/6/e00207-16 |
id |
doaj-041a2b379960432e947e725721ac6a26 |
---|---|
record_format |
Article |
spelling |
doaj-041a2b379960432e947e725721ac6a262021-07-02T04:46:10ZengAmerican Society for MicrobiologymBio2150-75112016-11-0176e00207-1610.1128/mBio.00207-16A Two-Component Regulatory System Impacts Extracellular Membrane-Derived Vesicle Production in Group A StreptococcusUlrike ReschJames Anthony TsatsaronisAnais Le RhunGerald StubigerManfred RohdeSergo KasvandikSusanne HolzmeisterPhilip TinnefeldSun Nyunt WaiEmmanuelle CharpentierExport of macromolecules via extracellular membrane-derived vesicles (MVs) plays an important role in the biology of Gram-negative bacteria. Gram-positive bacteria have also recently been reported to produce MVs; however, the composition and mechanisms governing vesiculogenesis in Gram-positive bacteria remain undefined. Here, we describe MV production in the Gram-positive human pathogen group A streptococcus (GAS), the etiological agent of necrotizing fasciitis and streptococcal toxic shock syndrome. M1 serotype GAS isolates in culture exhibit MV structures both on the cell wall surface and in the near vicinity of bacterial cells. A comprehensive analysis of MV proteins identified both virulence-associated protein substrates of the general secretory pathway in addition to “anchorless surface proteins.” Characteristic differences in the contents, distributions, and fatty acid compositions of specific lipids between MVs and GAS cell membrane were also observed. Furthermore, deep RNA sequencing of vesicular RNAs revealed that GAS MVs contained differentially abundant RNA species relative to bacterial cellular RNA. MV production by GAS strains varied in a manner dependent on an intact two-component system, CovRS, with MV production negatively regulated by the system. Modulation of MV production through CovRS was found to be independent of both GAS cysteine protease SpeB and capsule biosynthesis. Our data provide an explanation for GAS secretion of macromolecules, including RNAs, lipids, and proteins, and illustrate a regulatory mechanism coordinating this secretory response.http://mbio.asm.org/cgi/content/full/7/6/e00207-16 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ulrike Resch James Anthony Tsatsaronis Anais Le Rhun Gerald Stubiger Manfred Rohde Sergo Kasvandik Susanne Holzmeister Philip Tinnefeld Sun Nyunt Wai Emmanuelle Charpentier |
spellingShingle |
Ulrike Resch James Anthony Tsatsaronis Anais Le Rhun Gerald Stubiger Manfred Rohde Sergo Kasvandik Susanne Holzmeister Philip Tinnefeld Sun Nyunt Wai Emmanuelle Charpentier A Two-Component Regulatory System Impacts Extracellular Membrane-Derived Vesicle Production in Group A Streptococcus mBio |
author_facet |
Ulrike Resch James Anthony Tsatsaronis Anais Le Rhun Gerald Stubiger Manfred Rohde Sergo Kasvandik Susanne Holzmeister Philip Tinnefeld Sun Nyunt Wai Emmanuelle Charpentier |
author_sort |
Ulrike Resch |
title |
A Two-Component Regulatory System Impacts Extracellular Membrane-Derived Vesicle Production in Group A Streptococcus |
title_short |
A Two-Component Regulatory System Impacts Extracellular Membrane-Derived Vesicle Production in Group A Streptococcus |
title_full |
A Two-Component Regulatory System Impacts Extracellular Membrane-Derived Vesicle Production in Group A Streptococcus |
title_fullStr |
A Two-Component Regulatory System Impacts Extracellular Membrane-Derived Vesicle Production in Group A Streptococcus |
title_full_unstemmed |
A Two-Component Regulatory System Impacts Extracellular Membrane-Derived Vesicle Production in Group A Streptococcus |
title_sort |
two-component regulatory system impacts extracellular membrane-derived vesicle production in group a streptococcus |
publisher |
American Society for Microbiology |
series |
mBio |
issn |
2150-7511 |
publishDate |
2016-11-01 |
description |
Export of macromolecules via extracellular membrane-derived vesicles (MVs) plays an important role in the biology of Gram-negative bacteria. Gram-positive bacteria have also recently been reported to produce MVs; however, the composition and mechanisms governing vesiculogenesis in Gram-positive bacteria remain undefined. Here, we describe MV production in the Gram-positive human pathogen group A streptococcus (GAS), the etiological agent of necrotizing fasciitis and streptococcal toxic shock syndrome. M1 serotype GAS isolates in culture exhibit MV structures both on the cell wall surface and in the near vicinity of bacterial cells. A comprehensive analysis of MV proteins identified both virulence-associated protein substrates of the general secretory pathway in addition to “anchorless surface proteins.” Characteristic differences in the contents, distributions, and fatty acid compositions of specific lipids between MVs and GAS cell membrane were also observed. Furthermore, deep RNA sequencing of vesicular RNAs revealed that GAS MVs contained differentially abundant RNA species relative to bacterial cellular RNA. MV production by GAS strains varied in a manner dependent on an intact two-component system, CovRS, with MV production negatively regulated by the system. Modulation of MV production through CovRS was found to be independent of both GAS cysteine protease SpeB and capsule biosynthesis. Our data provide an explanation for GAS secretion of macromolecules, including RNAs, lipids, and proteins, and illustrate a regulatory mechanism coordinating this secretory response. |
url |
http://mbio.asm.org/cgi/content/full/7/6/e00207-16 |
work_keys_str_mv |
AT ulrikeresch atwocomponentregulatorysystemimpactsextracellularmembranederivedvesicleproductioningroupastreptococcus AT jamesanthonytsatsaronis atwocomponentregulatorysystemimpactsextracellularmembranederivedvesicleproductioningroupastreptococcus AT anaislerhun atwocomponentregulatorysystemimpactsextracellularmembranederivedvesicleproductioningroupastreptococcus AT geraldstubiger atwocomponentregulatorysystemimpactsextracellularmembranederivedvesicleproductioningroupastreptococcus AT manfredrohde atwocomponentregulatorysystemimpactsextracellularmembranederivedvesicleproductioningroupastreptococcus AT sergokasvandik atwocomponentregulatorysystemimpactsextracellularmembranederivedvesicleproductioningroupastreptococcus AT susanneholzmeister atwocomponentregulatorysystemimpactsextracellularmembranederivedvesicleproductioningroupastreptococcus AT philiptinnefeld atwocomponentregulatorysystemimpactsextracellularmembranederivedvesicleproductioningroupastreptococcus AT sunnyuntwai atwocomponentregulatorysystemimpactsextracellularmembranederivedvesicleproductioningroupastreptococcus AT emmanuellecharpentier atwocomponentregulatorysystemimpactsextracellularmembranederivedvesicleproductioningroupastreptococcus AT ulrikeresch twocomponentregulatorysystemimpactsextracellularmembranederivedvesicleproductioningroupastreptococcus AT jamesanthonytsatsaronis twocomponentregulatorysystemimpactsextracellularmembranederivedvesicleproductioningroupastreptococcus AT anaislerhun twocomponentregulatorysystemimpactsextracellularmembranederivedvesicleproductioningroupastreptococcus AT geraldstubiger twocomponentregulatorysystemimpactsextracellularmembranederivedvesicleproductioningroupastreptococcus AT manfredrohde twocomponentregulatorysystemimpactsextracellularmembranederivedvesicleproductioningroupastreptococcus AT sergokasvandik twocomponentregulatorysystemimpactsextracellularmembranederivedvesicleproductioningroupastreptococcus AT susanneholzmeister twocomponentregulatorysystemimpactsextracellularmembranederivedvesicleproductioningroupastreptococcus AT philiptinnefeld twocomponentregulatorysystemimpactsextracellularmembranederivedvesicleproductioningroupastreptococcus AT sunnyuntwai twocomponentregulatorysystemimpactsextracellularmembranederivedvesicleproductioningroupastreptococcus AT emmanuellecharpentier twocomponentregulatorysystemimpactsextracellularmembranederivedvesicleproductioningroupastreptococcus |
_version_ |
1721339526651052032 |