pH-responsive artemisinin derivatives and lipid nanoparticle formulations inhibit growth of breast cancer cells in vitro and induce down-regulation of HER family members.
Artemisinin (ART) dimers show potent anti-proliferative activities against breast cancer cells. To facilitate their clinical development, novel pH-responsive artemisinin dimers were synthesized for liposomal nanoparticle formulations. A new ART dimer was designed to become increasingly water-soluble...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2013-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC3597601?pdf=render |
id |
doaj-0418e4d2a6b94dc28d7adf01e47db4d9 |
---|---|
record_format |
Article |
spelling |
doaj-0418e4d2a6b94dc28d7adf01e47db4d92020-11-25T01:14:18ZengPublic Library of Science (PLoS)PLoS ONE1932-62032013-01-0183e5908610.1371/journal.pone.0059086pH-responsive artemisinin derivatives and lipid nanoparticle formulations inhibit growth of breast cancer cells in vitro and induce down-regulation of HER family members.Yitong J ZhangByron GallisMichio TayaShusheng WangRodney J Y HoTomikazu SasakiArtemisinin (ART) dimers show potent anti-proliferative activities against breast cancer cells. To facilitate their clinical development, novel pH-responsive artemisinin dimers were synthesized for liposomal nanoparticle formulations. A new ART dimer was designed to become increasingly water-soluble as pH declines. The new artemisinin dimer piperazine derivatives (ADPs) remained tightly associated with liposomal nanoparticles (NPs) at neutral pH but were efficiently released at acidic pH's that are known to exist within solid tumors and organelles such as endosomes and lysosomes. ADPs incorporated into nanoparticles down regulated the anti-apoptotic protein, survivin, and cyclin D1 when incubated at low concentrations with breast cancer cell lines. We demonstrate for the first time, for any ART derivative, that ADP NPs can down regulate the oncogenic protein HER2, and its counterpart, HER3 in a HER2+ cell line. We also show that the wild type epidermal growth factor receptor (EGFR or HER1) declines in a triple negative breast cancer (TNBC) cell line in response to ADP NPs. The declines in these proteins are achieved at concentrations of NP109 at or below 1 µM. Furthermore, the new artemisinin derivatives showed improved cell-proliferation inhibition effects compared to known dimer derivatives.http://europepmc.org/articles/PMC3597601?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Yitong J Zhang Byron Gallis Michio Taya Shusheng Wang Rodney J Y Ho Tomikazu Sasaki |
spellingShingle |
Yitong J Zhang Byron Gallis Michio Taya Shusheng Wang Rodney J Y Ho Tomikazu Sasaki pH-responsive artemisinin derivatives and lipid nanoparticle formulations inhibit growth of breast cancer cells in vitro and induce down-regulation of HER family members. PLoS ONE |
author_facet |
Yitong J Zhang Byron Gallis Michio Taya Shusheng Wang Rodney J Y Ho Tomikazu Sasaki |
author_sort |
Yitong J Zhang |
title |
pH-responsive artemisinin derivatives and lipid nanoparticle formulations inhibit growth of breast cancer cells in vitro and induce down-regulation of HER family members. |
title_short |
pH-responsive artemisinin derivatives and lipid nanoparticle formulations inhibit growth of breast cancer cells in vitro and induce down-regulation of HER family members. |
title_full |
pH-responsive artemisinin derivatives and lipid nanoparticle formulations inhibit growth of breast cancer cells in vitro and induce down-regulation of HER family members. |
title_fullStr |
pH-responsive artemisinin derivatives and lipid nanoparticle formulations inhibit growth of breast cancer cells in vitro and induce down-regulation of HER family members. |
title_full_unstemmed |
pH-responsive artemisinin derivatives and lipid nanoparticle formulations inhibit growth of breast cancer cells in vitro and induce down-regulation of HER family members. |
title_sort |
ph-responsive artemisinin derivatives and lipid nanoparticle formulations inhibit growth of breast cancer cells in vitro and induce down-regulation of her family members. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2013-01-01 |
description |
Artemisinin (ART) dimers show potent anti-proliferative activities against breast cancer cells. To facilitate their clinical development, novel pH-responsive artemisinin dimers were synthesized for liposomal nanoparticle formulations. A new ART dimer was designed to become increasingly water-soluble as pH declines. The new artemisinin dimer piperazine derivatives (ADPs) remained tightly associated with liposomal nanoparticles (NPs) at neutral pH but were efficiently released at acidic pH's that are known to exist within solid tumors and organelles such as endosomes and lysosomes. ADPs incorporated into nanoparticles down regulated the anti-apoptotic protein, survivin, and cyclin D1 when incubated at low concentrations with breast cancer cell lines. We demonstrate for the first time, for any ART derivative, that ADP NPs can down regulate the oncogenic protein HER2, and its counterpart, HER3 in a HER2+ cell line. We also show that the wild type epidermal growth factor receptor (EGFR or HER1) declines in a triple negative breast cancer (TNBC) cell line in response to ADP NPs. The declines in these proteins are achieved at concentrations of NP109 at or below 1 µM. Furthermore, the new artemisinin derivatives showed improved cell-proliferation inhibition effects compared to known dimer derivatives. |
url |
http://europepmc.org/articles/PMC3597601?pdf=render |
work_keys_str_mv |
AT yitongjzhang phresponsiveartemisininderivativesandlipidnanoparticleformulationsinhibitgrowthofbreastcancercellsinvitroandinducedownregulationofherfamilymembers AT byrongallis phresponsiveartemisininderivativesandlipidnanoparticleformulationsinhibitgrowthofbreastcancercellsinvitroandinducedownregulationofherfamilymembers AT michiotaya phresponsiveartemisininderivativesandlipidnanoparticleformulationsinhibitgrowthofbreastcancercellsinvitroandinducedownregulationofherfamilymembers AT shushengwang phresponsiveartemisininderivativesandlipidnanoparticleformulationsinhibitgrowthofbreastcancercellsinvitroandinducedownregulationofherfamilymembers AT rodneyjyho phresponsiveartemisininderivativesandlipidnanoparticleformulationsinhibitgrowthofbreastcancercellsinvitroandinducedownregulationofherfamilymembers AT tomikazusasaki phresponsiveartemisininderivativesandlipidnanoparticleformulationsinhibitgrowthofbreastcancercellsinvitroandinducedownregulationofherfamilymembers |
_version_ |
1725157482634936320 |