Exclusion statistics and lattice random walks

We establish a connection between exclusion statistics with arbitrary integer exclusion parameter g and a class of random walks on planar lattices, relating the generating function for the algebraic area of closed walks on the lattice to the grand partition function of particles obeying exclusion st...

Full description

Bibliographic Details
Main Authors: Stéphane Ouvry, Alexios P. Polychronakos
Format: Article
Language:English
Published: Elsevier 2019-11-01
Series:Nuclear Physics B
Online Access:http://www.sciencedirect.com/science/article/pii/S0550321319302172
id doaj-03ec785193074ae5b8564e4430c26908
record_format Article
spelling doaj-03ec785193074ae5b8564e4430c269082020-11-25T01:44:33ZengElsevierNuclear Physics B0550-32132019-11-01948Exclusion statistics and lattice random walksStéphane Ouvry0Alexios P. Polychronakos1LPTMS, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, FranceDepartment of Physics, City College of New York, NY 10038, USA; Corresponding author.We establish a connection between exclusion statistics with arbitrary integer exclusion parameter g and a class of random walks on planar lattices, relating the generating function for the algebraic area of closed walks on the lattice to the grand partition function of particles obeying exclusion statistics g. Square lattice random walks, described in terms of the Hofstadter Hamiltonian, correspond to g=2. In the g=3 case we construct a corresponding chiral random walk on a triangular lattice, and we point to potential random walk models for higher g. In this context, we also derive the form of the microscopic cluster coefficients for arbitrary exclusion statistics and one-body spectrum.http://www.sciencedirect.com/science/article/pii/S0550321319302172
collection DOAJ
language English
format Article
sources DOAJ
author Stéphane Ouvry
Alexios P. Polychronakos
spellingShingle Stéphane Ouvry
Alexios P. Polychronakos
Exclusion statistics and lattice random walks
Nuclear Physics B
author_facet Stéphane Ouvry
Alexios P. Polychronakos
author_sort Stéphane Ouvry
title Exclusion statistics and lattice random walks
title_short Exclusion statistics and lattice random walks
title_full Exclusion statistics and lattice random walks
title_fullStr Exclusion statistics and lattice random walks
title_full_unstemmed Exclusion statistics and lattice random walks
title_sort exclusion statistics and lattice random walks
publisher Elsevier
series Nuclear Physics B
issn 0550-3213
publishDate 2019-11-01
description We establish a connection between exclusion statistics with arbitrary integer exclusion parameter g and a class of random walks on planar lattices, relating the generating function for the algebraic area of closed walks on the lattice to the grand partition function of particles obeying exclusion statistics g. Square lattice random walks, described in terms of the Hofstadter Hamiltonian, correspond to g=2. In the g=3 case we construct a corresponding chiral random walk on a triangular lattice, and we point to potential random walk models for higher g. In this context, we also derive the form of the microscopic cluster coefficients for arbitrary exclusion statistics and one-body spectrum.
url http://www.sciencedirect.com/science/article/pii/S0550321319302172
work_keys_str_mv AT stephaneouvry exclusionstatisticsandlatticerandomwalks
AT alexiosppolychronakos exclusionstatisticsandlatticerandomwalks
_version_ 1725028029299687424