New Constitutive Matrix in the 3D Cell Method to Obtain a Lorentz Electric Field in a Magnetic Brake
In this work, we have obtained a new constitutive matrix to calculate the induced Lorentz electric current of in a conductive disk in movement within a magnetic field using the cell method in 3D. This disk and a permanent magnet act as a magnetic brake. The results obtained are compared with those o...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2018-09-01
|
Series: | Sensors |
Subjects: | |
Online Access: | http://www.mdpi.com/1424-8220/18/10/3185 |
Summary: | In this work, we have obtained a new constitutive matrix to calculate the induced Lorentz electric current of in a conductive disk in movement within a magnetic field using the cell method in 3D. This disk and a permanent magnet act as a magnetic brake. The results obtained are compared with those obtained with the finite element method (FEM) using the computer applications Getdp and femm. The error observed is less than 0.1173%. Likewise, a second verification has been made in the laboratory using Hall sensors to measure the magnetic field in the proximity of the magnetic brake. |
---|---|
ISSN: | 1424-8220 |