Números Tribonacci, S-unidades y triplas diofánticas
La sucesión Tribonacci T := {Tn}n≥0 tiene valores iniciales T0 = T1 =0,T2 =1 y cada término posterior es la suma de los tres términos precedentes. En este artículo, estudiamos la ecuación Tn = kTm, donde k es una S-unidad, para un conjunto finito S de primos. Particularmente, mostramos que cualquier...
Main Author: | |
---|---|
Format: | Article |
Language: | Spanish |
Published: |
Universidad Industrial de Santander
2015-12-01
|
Series: | Revista Integración |
Subjects: | |
Online Access: | https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/5262 |
Summary: | La sucesión Tribonacci T := {Tn}n≥0 tiene valores iniciales T0 = T1 =0,T2 =1 y cada término posterior es la suma de los tres términos precedentes. En este artículo, estudiamos la ecuación Tn = kTm, donde k es una S-unidad, para un conjunto finito S de primos. Particularmente, mostramos que cualquier par de miembros de la tripla diofántica {9, 56, 103} asociada a T +1, no se puede extender a otra tripla diofántica asociada a T +1.
Para citar este artículo: C.A. Gómez Ruiz, Números Tribonacci, S-unidades y triplas diofánticas, Rev Integr. Temas Mat. 33 (2015), No. 2, 121–133.
|
---|---|
ISSN: | 0120-419X 2145-8472 |