Solvability of a three-point nonlinear boundary-value problem

Using the Leray Schauder nonlinear alternative, we prove the existence of a nontrivial solution for the three-point boundary-value problem $$displaylines{ u''+f(t,u)= 0,quad 0<t<1 cr u(0)= alpha u'(0),quad u(1)=eta u'(eta ), }$$ where $eta in (0,1)$, $alpha ,...

Full description

Bibliographic Details
Main Authors: Assia Guezane-Lakoud, Smail Kelaiaia
Format: Article
Language:English
Published: Texas State University 2010-09-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2010/139/abstr.html
Description
Summary:Using the Leray Schauder nonlinear alternative, we prove the existence of a nontrivial solution for the three-point boundary-value problem $$displaylines{ u''+f(t,u)= 0,quad 0<t<1 cr u(0)= alpha u'(0),quad u(1)=eta u'(eta ), }$$ where $eta in (0,1)$, $alpha ,eta in mathbb{R}$, $fin C([0,1] imesmathbb{R},mathbb{R})$. Some examples are given to illustrate the results obtained.
ISSN:1072-6691