Solvability of a three-point nonlinear boundary-value problem
Using the Leray Schauder nonlinear alternative, we prove the existence of a nontrivial solution for the three-point boundary-value problem $$displaylines{ u''+f(t,u)= 0,quad 0<t<1 cr u(0)= alpha u'(0),quad u(1)=eta u'(eta ), }$$ where $eta in (0,1)$, $alpha ,...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2010-09-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/Volumes/2010/139/abstr.html |
Summary: | Using the Leray Schauder nonlinear alternative, we prove the existence of a nontrivial solution for the three-point boundary-value problem $$displaylines{ u''+f(t,u)= 0,quad 0<t<1 cr u(0)= alpha u'(0),quad u(1)=eta u'(eta ), }$$ where $eta in (0,1)$, $alpha ,eta in mathbb{R}$, $fin C([0,1] imesmathbb{R},mathbb{R})$. Some examples are given to illustrate the results obtained. |
---|---|
ISSN: | 1072-6691 |